Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Quỳnh
Xem chi tiết
Trần Thị Loan
11 tháng 5 2015 lúc 16:39

\(1.3.5....59=\frac{\left(1.3.5....59\right).\left(2.4.6....60\right)}{2.4.6....60}=\frac{\left(1.2.3.4.5...30\right).31....59.60}{2^{30}.\left(1.2.3...30\right)}=\frac{31.32....60}{2^{30}}=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\)

Kaitoru
11 tháng 5 2015 lúc 18:29

Chị quản lý Sao làm tốt thế mà chẳng được olm công nhận nhỉ

Lê Sỹ Long Nhật
14 tháng 8 2016 lúc 20:04

Vì đó là người quản lí nên công nhận cũng có được gì !!!

Yêu Chi Pu
Xem chi tiết
Đinh Tuấn Việt
3 tháng 5 2015 lúc 14:27

Ta có: \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=\frac{31.32.33...60}{2.2.2...2}=\frac{31.32.33...60}{2^{30}}\)

                                                       (30 số 2)

\(=\frac{\left(31.32.33...60\right).\left(1.2.3...30\right)}{2^{30}.\left(1.2.3...30\right)}=\frac{31.32.33...60.1.2.3...30}{\left(2.1\right).\left(2.2\right).\left(2.3\right)...\left(2.30\right)}=\frac{\left(1.3.5...59\right).\left(2.4.6...60\right)}{\left(2.4.6...60\right)}=1.3.5...59\)

Le Thi Khanh Huyen
3 tháng 5 2015 lúc 14:30

\(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=\frac{31.32.33...60}{2^{30}}\)

\(=\frac{\left(31.32.33...60\right).\left(1.2.3...30\right)}{2^{30}.\left(1.2.3...30\right)}\)

\(=\frac{1.2.3...60}{2^{30}\left(1.2.3...30\right)}\)

\(=\frac{\left(1.3.5.7...59\right)\left(2.4.6.8...60\right)}{\left(2.4.6.8...60\right)}\)

\(=1.3.5.7...59\)

Trương Gia Trịnh
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 5 2015 lúc 13:04

Ta có:

\(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=\frac{31.32.33...60}{2^{30}}\)

                                    \(=\frac{\left(31.32.33...60\right).\left(1.2.3...30\right)}{2^{30}.\left(1.2.3...30\right)}\)

                                    \(=\frac{1.2.3...60}{2^{30}\left(1.2.3...30\right)}\)

                                    \(=\frac{\left(1.3.5.7...59\right)\left(2.4.6.8...60\right)}{\left(2.4.6.8...60\right)}\)

                                    \(=1.3.5.7...59\)

Vậy \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}=1.3.5.7...59\)

Nguyễn Hữu Huy
Xem chi tiết
Lê Hồ Khánh Hà
Xem chi tiết
๖ۣۜBá ๖ۣۜVươηɠ
Xem chi tiết
Đàm Thị Minh Hương
22 tháng 6 2018 lúc 7:34

Ta có: \(\frac{31}{2}.\frac{32}{2}...\frac{60}{2}=\frac{31.32...60}{2^{30}}=31.33...57.59.\left(\frac{32.34...58.60}{2^{30}}\right)\)

                                                                         \(=31.33...57.59.\left(\frac{16.17...29.30}{2^{15}}\right)=17.19...27.29.31.33...57.59.\left(\frac{16.18...30}{2^{15}}\right)\)

\(=17.19...57.59.\left(\frac{8.9...15}{2^7}\right)=9.11.13.15.17...57.59.\left(\frac{8.10.12.14}{2^7}\right)\)

\(=9.11...57.59.\left(\frac{4.5.6.7}{2^3}\right)=5.7.9...57.59.\left(\frac{4.6}{2^3}\right)\)

\(=5.7.9...57.59.3=1.3.5...59\)

Phước Lộc
Xem chi tiết
Lã Hoàng Hải Linh
25 tháng 9 2017 lúc 19:23

         \(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)

\(=\)\(\left[\left(31.32.33....60\right)\right]\)\(.\)\(\left(\frac{1.2.3....30}{2^{30}}\right)\)\(.\)\(\left(1.2.3....30\right)\)

\(=\)\(\left[\frac{\left(1.3.5....59\right).\left(2.4.6....60\right)}{2.4.6....60}\right]\)\(=\)\(1.3.5....59\)

Vậy \(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)\(=\)\(1.3.5....59\)

kudo shinichi
25 tháng 9 2017 lúc 19:26

ta có:Đặt A= \(1.3.5.....59=\frac{1.2.3.4.....59.60}{2.4.6.....60}\)

=\(\frac{1.2.3.....59.60}{2^{30}.\left(1.2.3.....30\right)}=\frac{31.32.....59.60}{2^{30}}\)

\(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)

vì \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\) = \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)    

\(\Rightarrow\)A= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)

                                          ( Điều phải chứng minh)

toán nâng cao lớp 6 đấy bạn nha

Lưu Trọng Hiếu
25 tháng 9 2017 lúc 19:32

sửu nhi

:>

ngô trà my
Xem chi tiết
Nguyễn Duy Hùng
26 tháng 5 2015 lúc 14:06

\(1.3.5.7.9...59=\frac{\left(1.3.5...59\right).\left(2.4.6...60\right)}{2.4.6...60}=\frac{1.2.3...60}{2^{30}\left(1.2.3...30\right)}\)

\(=\frac{31.32.33...60}{2.2.2...2}=\frac{31}{2}\cdot\frac{32}{2}\cdot\frac{33}{2}...\frac{60}{2}\)

Vậy \(\frac{31}{2}\cdot\frac{32}{2}\cdot\frac{33}{2}...\frac{60}{2}=1.3.5...59\)(đpcm)

Nguyễn Đức Tuệ
Xem chi tiết
robert lewandoski
11 tháng 6 2015 lúc 8:46

Ta có:

31/2.32/2.33/2....60/2=31.32......60/2^30

=(31.32.33....60)(1.2.3....30)/2^30(1.2.3...30)

=(1.3.5...59)(2.4.6...60)/(2.4.6...60)=1.3.5...59

=>P=Q

nhớ ****

Việt Nguyễn
6 tháng 4 2017 lúc 19:54

cái dòng 3, 4 mk ko hiểu sao 2^30.(1.2.3....30) lại bằng 2.4.6...60

Việt Nguyễn
6 tháng 4 2017 lúc 20:06

ak hểu r