Tìm x, biết:
\(\left(x+1\right)\cdot\left(x-3\right)< 0\)
Tìm x biết :
a, ( 4x - 9 ) . ( 2,5 + \(\frac{-7}{3}\). x ) = 0
b, \(\frac{1}{x\cdot\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\cdot\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
A/ Ta có số nào nhân với 0 cx = 0
Vậy từ đó suy ra 2 trường hợp
TH1\(4x-9=0\)
\(=>x=\frac{9}{4}\)
TH2 \(2,5+-\frac{7}{3}x=0\)
\(=>x=\frac{15}{14}\)
Tìm x, biết :
\(\left(3-\frac{1}{2}\cdot x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\left(3-\frac{1}{2}x\right)\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\left|x+\frac{3}{4}\right|=\frac{5}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=\frac{1}{12}\\x=\frac{-19}{12}\end{cases}}\)
\(\left(3-\frac{1}{2}x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)
\(\Rightarrow\hept{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\x+\frac{3}{4}=\pm\frac{5}{6}\end{cases}}\)
Ta có
\(x+\frac{3}{4}=\pm\frac{5}{6}\)
\(\hept{\begin{cases}x+\frac{3}{4}=\frac{5}{6}\\x+\frac{3}{4}=-\frac{5}{6}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{12}\\x=-\frac{19}{12}\end{cases}}}\)
Vậy \(x\in\left\{3;\frac{1}{2};-\frac{19}{12}\right\}\)
\(\left(3-\frac{1}{2}.x\right).\left(|x+\frac{3}{4}|-\frac{5}{6}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}.x=0\\|x+\frac{3}{4}|-\frac{5}{6}=0\end{cases}\Rightarrow\orbr{\begin{cases}\frac{1}{2}.x=3\\|x+\frac{3}{4}|=\frac{5}{6}\end{cases}\Rightarrow}\orbr{\begin{cases}x=6\\x+\frac{3}{4}=\frac{5}{6}\end{cases}\Rightarrow}\orbr{\begin{cases}x=6\\x=\frac{1}{12}\end{cases}}}\)
Tìm x biết
\(x\left(x+1\right)=0\)
\(3x\left(2x-1\right)=0\)
\(\left(x+1\right)\cdot\left(x-2\right)=0\)
\(x^2\cdot\left(x+4\right)=0\)
\(\left(x+1\right)^2\cdot\left(3x-5\right)=0\)
\(x^2+1=0\)
\(3x^2\cdot\left(2x-5\right)^2=0\)
\(1\cdot2\cdot3\cdot.....\cdot100x=0\)
\(\left(\frac{3}{4}\right)^x=1\)
\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}\)
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
Tìm x Biết :a) \(\left(x+1\right)\cdot\left(x-2\right)< 0\)
b) \(\left(x-2\right)\cdot\left(x+\frac{2}{3}\right)>0\)
\(a,\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\)
=> -1 < x < 2
a, \(\left(x+1\right)\left(x-2\right)< 0\)
th1 :
\(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\left(vl\right)}}\)
th2 :
\(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2\left(tm\right)}}\)
b, \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
th1 :
\(\hept{\begin{cases}\left(x-2\right)>0\\\left(x+\frac{2}{3}\right)>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\Rightarrow}x>2}\)
th2 :
\(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Rightarrow x< -\frac{2}{3}}}\)
\(b,\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
=> -2/3 > x > 2
=.= hk tốt!!
Tìm x biết:
\(\frac{3}{\left(x+2\right)\cdot\left(x+5\right)}+\frac{5}{\left(x+5\right)\cdot\left(x+10\right)}+\frac{7}{\left(x+10\right)\cdot\left(x+17\right)}=\frac{x}{\left(x+2\right)\cdot\left(x+17\right)}\)
Theo đề ta có :
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\left(x+17\right)-\left(x+2\right)=x\)
\(\Rightarrow x=15\)
Tìm x:
\(a,\left(2-x\right)\cdot\left(2x+1\right)>0\)
\(b,\left(2x+3\right)\cdot\left(x+1\right)< 0\)
a) (2 - x)(2x + 1) > 0
TH1: \(\hept{\begin{cases}2-x>0\\2x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>-\frac{1}{2}\end{cases}\Rightarrow}-\frac{1}{2}< x< 2}\)
TH2: \(\hept{\begin{cases}2-x< 0\\2x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< -\frac{1}{2}\end{cases}\left(vl\right)}}\)(vô lí)
Vậy: -1/2 < x < 2
b) (2x+3)(x + 1) < 0
TH1: \(\hept{\begin{cases}2x+3>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-\frac{3}{2}\\x< -1\end{cases}\Rightarrow-\frac{3}{2}< x< -1}}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}\left(x< -\frac{3}{2}\right)\\x>-1\end{cases}}\left(vl\right)}\)(vô lí)
Vậy -3/2 < x < -1
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
Giải phương trình
a. \(\frac{1}{27}\cdot\left(x-3\right)^3-\frac{1}{125}\cdot\left(x-5\right)^3=0\)
b.\(125x^3-\left(2x+1\right)^3-\left(3x-1\right)^3=0\)
c.\(\left(x-3\right)^3+\left(x+1\right)^3=8\cdot\left(x-1\right)^3\)
d.\(\left(x^2-3x+2\right)\cdot\left(x^2+15x+56\right)+8=0\)
e.\(\left(2x^2-3x+1\right)\cdot\left(2x^2+5x+1\right)-9x^2=0\)
f.\(\left(x+6\right)^4+\left(x+8\right)^4=272\)
tìm x biết \(\left(2x+1\right)\cdot\left(x+1\right)^2\cdot\left(2x+3\right)=18\)