so sánh 2 số a và b, biết a=2mũ 9 nhân 2 mũ 24, b=3 mũ 58 chia 3 mũ 34
so sánh, (đưa về cùng cơ số hoặc số mũ)
a) 3 mũ 20 và 27 mũ 4
b) 5 mũ 34 và 25.5 mũ 30
c) 2 mũ 24 và 26 mũ 6
d) 10 mũ 30 và 4 mũ 50
e) 2 mũ 300 và 3 mũ 200
nhanh nha, chi tiết nx, giúp tớ vs
a,320 và 274
320=(35)4=2434>274
Vậy 320>274
b,534 và 25x530
25x530=52x530=532<534
=>534>25x530.
c,224và 266
224=(24)6=166<266
=>224<266
d,1030và 450
1030=(103)10=100010
450=(45)10=102410
Vì 100010<102410nên 1030<450.
e,2300và 3200
2300=(23)100=8100
3200=(32)100=9100
Vì 8100<9100 nên 2300<3200
so sánh ;
2 mũ 9 * 2 mũ 24 và 3 mũ 56 / 3 mũ 34
1,So sánh
a, 0 mũ 2002 và 0 mũ 2023
b,2022 mũ 0 và 2023 mũ 0
c, 54 mũ 9 và 55 mũ 10
d,(4 + 5) mũ 3 và 4 mũ 2 + 5 mũ 2
đ,9 mũ 2 - 3 mũ 2 và (9-3)mũ 2
Bài 2:Tính giá trị biểu thức
a, 3 mũ 2 x 4 mũ 3 - 3 mũ 2 + 333
b, 5 x 4 mũ 3 + 24 x 5 + 41 mũ 0
c, 2 mũ 3 x 4 mũ 2 + 3 mũ 2 x 5 - 40 x 1 mũ 2023
Giúp mình với,mình đang cần !!
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Bài 2 :
a) \(3^2.4^3-3^2+333=3^2\left(4^3-1\right)+9.37=9.63+9.37=9\left(63+37\right)=9.100=900\)
b) \(5.4^3+24.5+41^0=20.4^2+20.6+1=20\left(16+6\right)+1=20.22+1=441\)
c) \(2^3.4^2+3^2.5-40.1^{2023}=8.16+9.5-40.1=128+45-40=128+5=133\)
cho S = 1+2+2mũ 2+2mũ 3+.....+2 mũ 9
Hãy so sánh S với 5 nhân 2mũ 8
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2^{10}-1\)
Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)
Vậy \(S< 5.2^8\)
S=1+2+2^2+2^3+...+2^9
2S=2+2^2+2^3+...+2^9+2^10
2S-S=(2+2^2+2^3+...+2^9+2^10)-(1+2+2^2+2^3+...+2^9)
S=2^10-1
5.2^8=(2^2+1).2^8=(2^2.2^8)+(1.2^8)=2^10+2^8
Vì 2^10-1<2^10+2^8=> S<5.2^8
Vậy S < 5. 2^8
Ta có: \(S=1+2+2^2+2^3+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(\Rightarrow S=2^{10}-1\)
Mặt khác: \(5.2^8=\left(1+2^2\right).2^8=2^8+2^2.2^8=2^8+2^{10}\)
Vì \(2^{10}-1< 2^8+2^{10}\Rightarrow S< 5.2^8\)
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
So sánh
a)2 mũ 100 và 4 mũ 50
b)4 mũ 3 nhân 5 mũ 3 và 19 mũ 3
Tìm x
3 mũ 2 nhân 4 mũ 2 chia (x -2 )=12
a)4^50=(2^2)^50=2^100
Vậy 2^100=4^50
b) 4^3x5^3=(4x5)^3=20^3
Vì 20^3>19^3 nên 4^3x5^3>19^3
Tìm x:
3^2x4^2:(x-2)=12
(3x4)^2:(x-2)=12
12^2:(x-2)-12
x-2=12^2:12
x-2=12
x=12+2
x=14
a, 2100 và 450
Ta có :
450=(22)50=2100
Vì 2100 = 2100
=> 450 = 2100
KHÓ QUÁ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
So sánh các số a và b sau
a, A bằng 2009 mũ 10 + 2009 mũ 9 và b 2010 mũ 10
b, A bằng 36 chia ba mũ 2 và b bằng 4 mũ 7 chia 4 mũ 3
Anh chị giải giúp em bài toán này với ah
a)nếu 200910+9=200919
vậy 200919>201010suy ra A>B
nếu 36:32=4 và 47:43 =47-3=44
vậy 4<44 suy ra A<B
chúc bn
hok tốt
a) \(A=2009^{10}+2009^9\)và \(B=2010^{10}\)
\(A=2009^{10}+2009^9=2009^9\left(2009+1\right)=2009^9.2010\)
\(B=2010^{10}=2010.2010^9\)
Vì 2010>2009 nên \(2010^9>2009^9\)Suy ra: B>A
b) \(A=36:3^2=6^2:3^2=\left(6:3\right)^2=2^2=4\)
\(B=4^7:4^3=4^{7-3}=4^4\)
=> B>A
Tính hợp lý
a) (3 mũ 4 ×57-9 mũ 2 × 21) ÷ 3 mũ 5
b) M=2mũ 3 +4 mũ 3+6 mũ 3+...+18 mũ 3 biết:
1 mũ 3 +2 mũ3+...+9 mũ3=2025
a) \(\left(3^4.57-9^2.21\right):3^5\)
\(=\left(3^4.57-3^4.21\right):3^5\)
\(=\left[3^4\left(57-21\right)\right]:3^5\)
\(=3^4.36:3^5\)
\(=3^4.2^2.3^2:3^5\)
\(=3.4\)
\(=12\)
b) Ta có; \(1^3+2^3+...+9^3=2025\)
\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)
\(\Leftrightarrow2^3+4^5+...+18^3=16200\)
bài 1:Tìm x
a) 5 mũ x+3<5 mũ 6
b) x+2.x+3.x+....+100.x=15150 (x thuộc N*)
Bài 2 so sánh
a) 2 mũ 300 và 3 mũ 200
b) 63 mũ 15 và 34 mũ 18
c) 83 mũ 9 và 26 mũ 12