Tìm X :
a, 3/1.4+3/4.7+...+1/x.(x+3)=100/101
Tìm X :
a, 3/1.4+3/4.7+...+1/x.(x+3)=100/101
Tìm X :
a, 3/1.4+3/4.7+...+1/x.(x+3)=100/101
Đoạn cuối đáng là \(\frac{3}{x.\left(x+3\right)}\) nhưng bạn ghi lộn nha!
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{x+2}{x+3}=\frac{100}{101}\Rightarrow x=100-2\)
\(\Rightarrow x=98\)
\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{1}{x.\left(x+3\right)}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+........+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{101}\)
\(\Rightarrow x+3=101\)
\(\Rightarrow x=98\)
Tìm X :
a, 3/1.4+3/4.7+...+1/x.(x+3)=100/101
Tìm X :
a, 3/1.4+3/4.7+...+1/x.(x+3)=100/101
Tìm x
A=\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+...+\(\frac{3}{x.\left(x+3\right)}\)=\(\frac{100}{101}\)
Giúp mik vs nha các bạn
\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x\left(x+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(=1-\frac{1}{x+3}\)
\(=\frac{x+2}{x+3}=\frac{100}{101}\)
\(\Rightarrow x=98\)
\(A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(A=1-\frac{1}{x+3}=\frac{100}{101}\)
\(\frac{1}{x+3}=1-\frac{100}{101}=\frac{1}{101}\)
=> x + 3 = 101
=> x = 101 - 3
=> x = 98
Vậy x = 98
Ủng hộ mk nha ^_-
Tìm x:
D=\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+...+\(\frac{1}{x.\left(x+3\right)}\)=\(\frac{100}{101}\)
Giúp mik vs nha
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)
\(\Leftrightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{\left(x+3\right)}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{101}\)
\(\Rightarrow x+3=101\)
\(=>x=98\)
\(D=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x.\left(x+3\right)}=\frac{100}{101}\)
\(D=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(D=1-\frac{1}{x+3}=\frac{100}{101}\)
\(D=\frac{1}{x+3}=1-\frac{100}{101}\)
\(D=\frac{1}{x+3}=\frac{1}{101}\)
\(\Rightarrow x+3=101\Rightarrow x=98\)
Ủng hộ mk nha ^_^
Tìm x thỏa mãn
a, \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{97.100}=|\frac{x}{3}|\)
b, \(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{97.101}=|\frac{5x-4}{101}|\)
c,\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)=|x-1\frac{99}{100}|\)
a, \(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+......+\(\frac{1}{97.100}\)= |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) ( \(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+.......+\(\frac{3}{97.100}\))= |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) ( 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) ( 1-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) . \(\frac{99}{100}\) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{33}{100}\) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{x}{3}\)= \(\orbr{\begin{cases}\frac{33}{100}\\\frac{-33}{100}\end{cases}}\)
Với \(\frac{x}{3}\) = \(\frac{33}{100}\)
\(\Rightarrow\)100x= 33.3
\(\Rightarrow\)100x=99
\(\Rightarrow\)x=\(\frac{99}{100}\)
Với \(\frac{x}{3}\)=\(\frac{-33}{100}\)
\(\Rightarrow\)100x=-33.3
\(\Rightarrow\)100x=-99
\(\Rightarrow\)x=\(\frac{-99}{100}\)
Vậy x=\(\orbr{\begin{cases}\frac{99}{100}\\\frac{-99}{100}\end{cases}}\)
b, \(\frac{4}{1.5}\)+ \(\frac{4}{5.9}\)+......+ \(\frac{4}{97.101}\)= |\(\frac{5x-4}{101}\)|
\(\Rightarrow\)1-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{9}\)+......+\(\frac{1}{97}\)-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)|
\(\Rightarrow\)1-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)
\(\Rightarrow\) \(\frac{100}{101}\)= |\(\frac{5x-4}{101}\)|
\(\Rightarrow\)\(\frac{5x-4}{101}\) =\(\orbr{\begin{cases}\frac{100}{101}\\\frac{-100}{101}\end{cases}}\)
Với \(\frac{5x-4}{101}\) =\(\frac{100}{101}\)
\(\Rightarrow\)(5x-4).101=100.101
\(\Rightarrow\)505x-404=10100
\(\Rightarrow\)505x=10504
\(\Rightarrow\)x=\(\frac{104}{5}\)
Với \(\frac{5x-4}{101}\)=\(\frac{-100}{101}\)
\(\Rightarrow\)(5x-4). 101=-100.101
\(\Rightarrow\)505x-404=-10100
\(\Rightarrow\)505x=-9696
\(\Rightarrow\)x=\(\frac{-96}{5}\)
Vậy x=\(\orbr{\begin{cases}\frac{104}{5}\\\frac{-96}{5}\end{cases}}\)
tìm x thuộc N*
a)1/1.4 + 1/4.7 +1/7.10 +........+ 1/x.(x+3) = 49/148
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
\(3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{\left(x+3\right)}\right)=3\cdot\frac{49}{148}\)
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\left(x+3\right)}=\frac{147}{148}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{147}{148}\)
\(1-\frac{1}{x-1}=\frac{147}{148}\)
\(\frac{1}{x-1}=1-\frac{147}{148}\)
\(\frac{1}{x-1}=\frac{1}{148}\)
\(\Rightarrow x-1=148\)
\(\Leftrightarrow x=148+1\)
\(\Leftrightarrow x=149\)
Vậy x=149
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{49}{148}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{148}\)
\(\Rightarrow x+3=148\)
\(\Rightarrow x=148-3\)
\(\Rightarrow x=145\)
Vậy x = 145
_Chúc bạn học tốt_
Tìm x:
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/x.(x+3)= 667/2002
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999