bài 1)Cho x,y >0 tìm x,y thỏa mãn x^2+y^2=931
bài 1: cho x;y là 2 số thực thỏa mãn x^3+ y^3=2
cmr: 0<x+y<=2
bài 2: cho x,y,z >=0 thỏa mãn x+y+z=1
Tìm GTLN của P=22xy +4yz+ 2015zx
tìm các số tự nhiên sao cho x>y>0 thỏa mãn điều kiện
\(\sqrt{x}+\sqrt{y}=\sqrt{931}\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=7\sqrt{19}\)
đặt \(\sqrt{x}=a.\sqrt{19}\);\(\sqrt{y}=a.\sqrt{19}\left(a+b=7\right)\)
Vì \(a,b\in N\)nên \(a\in\hept{ }0;1;2;3;4;5;6;7\)
xét từng TH rồi được kết quả (x;y) là (0;931),(19;684),(76;475),(171,304),(304;171),(475;76),(684;19),(931;0)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Help me please
bài 1 cho x, y thỏa mãn x+2y=1 tìm GTLN của P=4xy
bài 2 cho x,y,z>0 thỏa mãn x+y+z =4 CM : x+y>=xyz
bài 3: tìm GTLN của A= x^2 /(x^4+4)
bài 4:tìm GTLN M=x-2√x-5
pạn nào lm đc mún j mh xin hậu tạ :v :v
b1: x+2y=1 => x=1-2y
P=4xy=4y(1-2y)=4y-8y2
Ta có: y2>=0(với mọi x)
=>8y2>=0(với mọi x)
=>-8y2<=0(với mọi x)
=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)
Do đó, GTLN của P là 4y khi:y=0
Vậy GTLN của P là 0
b3: Ta có: x^4>=0(với mọi x)
=>x^4+4>=4(với mọi x)
=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)
Do đó, GTLN của A là x^2/4 khi x=0
Vậy GTLN của A là 0 tại x=0
b4:\(M=x-2.\sqrt{x-5}\)
Ta có: \(\sqrt{x-5}\)>=0(với mọi x)
=>2.\(\sqrt{x-5}\)>=0(với mọi x)
=>-2.\(\sqrt{x-5}\)<=0(với mọi x)
=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)
Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0
x-5=0
x=0+5=5
Vậy GTLN của M là 5 tại x=5
Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:
P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]
=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)
Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)0
=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)
Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)
bài 4 yêu cầu phải là tìm GTNN nhé
x-2\(\sqrt{x}\)-5= \(\left(\sqrt{x}\right)^2\)-2.\(\sqrt{x}\).1+\(1^2\)-\(1^2\)-5
=\(\left(\sqrt{x}-1\right)^2\)-6
Ta có \(\left(\sqrt{x}-1\right)^2\)\(\ge\)0
=>\(\left(\sqrt{x}-1\right)^2\)-6 \(\ge\)-6
Vậy M đạt giá trị nhỏ nhất là -6 dấu = xảy ra khi \(\sqrt{x}\)-1=0=> x=1
Bài 1: CHo 2 số thực x,y sao cho x+y=1. Tìm Min của M=5x2+y2
Bài 2: Cho 2 số x,y thỏa mãn x2+2xy+8(x+y)+2y2+12=0 Tìm Max và Min của N=x+y+1