Cho a+b+c=0 và ab+ac+bc=0
Tính giá trị của biểu thức:
M=(a-2016)2016+(b-2016)2016-(c+2016)2016
Cho a+b+c=0 và ab+ac+bc=0
Tính giá trị của biểu thức:
M=(a-2016)2016+(b-2016)2016-(c+2016)2016
a+b+c=0 => a^2+b^2+c^2+2ab+2bc+2ca = 0 => a^2+b^2+c^2=0
=> a^2+b^2+c^2 = ab+bc+ca
=> 2a^2+2b^2+2c^2 = 2ab+2bc+2ca
=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
=> a=b=c, mà a+b+c=0 => a=b=c=0
thay vào
M=(0-2016)2016+(0-2016)2016-(0-2016)2016=(-2016)2016=20162016
Chúc bạn hoc tốt ùng hộ nha
Cho a+b+c=0 và ab+ac+bc=0.Tính M=(a-2016)^2016+(b-2016)^2016-(c-2016)^2016
Cho a+b+c=0 và a^2+b^2+c^2=14.Tính P=a^4+b^4+c^4
(a+b+c)^2=0=>a^2+b^2+c^2+2(ab+bc+ac)=0=>2(ab+bc+ac)=-14=>(ab+ac+bc)^2=49 phân tích (ab+ac+cb)^2 ta được (ab)^2+(bc)^2+(ac)^2=49 đặt N= a^2+b^2+c^2=14=> N^2=196 phân tích N^2 rồi thế (ab)^2+(bc)^2+(ac)^2=49 vào N^2 sẽ có kết quả của a^4+b^4+c^4
Cho a,b,c >0 , a+b+c=2016. Tìm giá trị lớn nhất của biểu thức:
\(P=\frac{bc}{2016-a}+\frac{ca}{2016-b}+\frac{ab}{2016-c}\)
Ta co:
\(\text{ }P=\Sigma_{cyc}\frac{ab}{2016-c}=\Sigma_{cyc}\frac{ab}{a+b}\le\Sigma_{cyc}\frac{\frac{\left(a+b\right)^2}{4}}{a+b}=\Sigma_{cyc}\frac{a+b}{4}=1008\)
Dau '=' xay ra khi \(a=b=c=672\)
cho a+b+c=0 va ab+ac+bc=0 tinh gia tri bieu thuc
M= (a-2016)2016 +(b-2016)2016-(c+2016)2016
cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca\ge3\) tìm giá trị nhỏ nhất của biểu thức A= \(\dfrac{a^2+b^2+c^2}{\sqrt{a+2016}+\sqrt{b+2016}+\sqrt{c+2016}}\)
Cho a, b, c, khác 0. Tính giá trị biểu thức :\(A=x^{2017}+y^{2017}+z^{2017}\)
biết x,y,z thỏa mãn:
\(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho a,b,c>0 và ab+bc+ca=2016.
Chứng minh:
\(\sqrt{\frac{bc}{a^2+2016}}+\sqrt{\frac{ac}{b^2+2016}}+\sqrt{\frac{ab}{c^2+2016}}\) \(\le\frac{3}{2}\)
Cứu tôi!!!
A= a/(2016 - c) + b/(2016 - a) + c/(2016-b). CM giá trị biểu thức trên ko phải số nguyên biết a + b + c = 2016
bạn tham khảo tại link này nhé~
Câu hỏi của họk toán vs đamê
Cho a,b,c>0 sao cho ab+bc+ac=3. CMR
1/(a^2+b^2+2016)+1/(b^2+c^2+2016)+1/(c^2+a^2+2016) >= 3/2018