Cho tam giác ABC vuông tại A. Trên cạnh AB và AC lấy các điểm M và N sao cho BM = CN.
CMR: trung trực MN luôn đi qua một điểm cố định.
MN GIẢ GIÚP EM VỚI< sắp ĐỄN GIỜ NỘP RỒI
Cho tam giác ABC vuông tại A. Trên cạnh AB và AC lấy các điểm M và N sao cho BM = CN.
CMR: trung trực MN luôn đi qua một điểm cố định.
Tối em phải nộp cho thây. Mong mn giúp, em nghĩ mấy hôm rồi
Cho tam giác ABC vuông tại A. Trên cạnh AB và AC lấy các điểm M và N sao cho BM = CN.
CMR: trung trực MN luôn đi qua một điểm cố định.
mn giải hộ mk với, sắp đễn giờ nộp rồi
Cho tam giác ABC vuông tại A và AB < AC. Trên các tia BA và CA lấy điểm M,N thay đổi sao cho BM = CN. Chứng minh rằng đường trung trực của MN luôn đi qua 1 điểm cố định.
Cho tam giác ABC cân tại A , trên 2 cạnh AB và AC lấy 2 điểm M và N thay đổi sao cho AM = AN .CMR :
a) Các hình chiếu của BM và Cn trên BC bằng nhau .
b) BN > BC + MN / 2 .
c) BC - MN < 2BM .
d) Trung trực của MN luôn đi qua một điểm cố định .
Cho tam giác ABC có AB < AC. Trên các cạnh AB và AC lần lượt lấy các điểm M và N thay đổi sao cho BM = CN. Gọi K là trung điểm MC, kẻ đường thẳng đi qua trung điểm J của Bc và trung điểm I của MN cắt các đường thẳng AB và AC lần lượt ở D và E
a) CMR : Tam giác IJK và tam giác ADE cân
b) Chứng minh trung điểm I của MN luôn nằm trên một tia cố định
c) Chứng minh rằng trung trực của MN luôn đi qua một điểm cố định
a/ Xét tam giác MNC có:
I trung điểm MN
K trung điểm MC
Vậy IK là đường trung bình của tam giác MNC
=> IK = 1/2 NC (1)
Mặt khác, xét tam giác MCB có:
K trung điểm MC
J trung điểm BC
Vậy KJ là đường trung bình tam giác MCB
=> KJ =1/2 BM (2)
mà BM = CN (gt) (3)
Từ (1), (2) và (3) => IK = KJ
=> Tam giác IKJ cân tại K
Lại có IK // NC (tính chất đường trung bình trong tam giác)
=> góc KIJ = góc CEJ (đồng vị) (4)
KJ // BM (tính chất đường trung bình trong tam giác)
=> góc KJI = ADJ (so le trong) (5)
mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)
Từ (4), (5), (6) => góc ADE = góc AED
=> Tam giác ADE cân tại A (đpcm)
b/ Ko biết làm ^^
c/ Ko biết làm ^^
Cho tam giác ABC cân tại A. TRên các cạnh AB ; AC lần lượt lấy các điểm M và N sao cho AM + AN = AB. CHứng minh rằng: Khi M và N di chuyển trên AB và AC nhưng vẫn thỏa mãn AM + AN = AB thì đường trung trực của MN luôn đi qua một điểm cố định
Cho tam giác ABC có (AB= AC ).Trên cạnh AB lấy điểm M, trên tia AC lấy điểm N sao cho BM=CN. Đường thẳng BC cắt MN tại I.CMR:
a,I là trung điểm của MN.
b, Đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi.
Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy các điểm M và N sao cho AM + AN = AB:
a) Đường trung trực của AB cắt tia phân giác của  tại O. CMR: tam giác BOM = tam giác AON.
b) CMR: Khi MN di động trên 2 cạnh AB và AC nhưng vẫn có: AM + AN = AB thì đường trung trực của MN luôn đi qua 1 điểm cố định.
Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy các điểm M và N sao cho AM + AN = AB:
a) Đường trung trực của AB cắt tia phân giác của  tại O. CMR: tam giác BOM = tam giác AON.
b) CMR: Khi MN di động trên 2 cạnh AB và AC nhưng vẫn có: AM + AN = AB thì đường trung trực của MN luôn đi qua 1 điểm cố định.