Cho tam giác ABC vuông tại A Có đường cao AH. HE vuông góc AC, HF vuông góc AB
C/m CE/BF = AC3/AB3
Cho tam giác ABC vuông tại A
Có đường cao AH. HE vuông góc AC, HF vuông góc AB
C/m \({CE \over BF} = {AC^3 \over AB^3} \)
cho tam giác ABC nhọn có đường cao AH , Kẻ He vuông góc với AB ; kẻ HF vuông góc với AC ; BF cắt HE tại M ; CE cắt HF tại N . Trên BC lấy P và Q sao cho tứ giác FPHN và FQHM nội tiếm . Chứng minh rằng PN = QM
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Kẻ đường cao AH, đường kính AD.Kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F . Gọi G là giao điểm của BF và CE . BF và CE cắt đường tròn tại M và N. Chứng minh MN vuông góc với AD
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc AB tại E. HF vuông góc AC. Gọi K là hình chiếu của A trên BF. CHứng minh
tam giác BHF đồng dạng tam giác BKC
Cho tam giác ABC vuông tại A đường cao AH. HE vuông góc với AB, HF vuông góc với AC Chứng minh rằng 2 lần diện tích tam giác ABC bằng AH mũ 4 chia cho HE nhân HF
Cho tam giác ABC vuông tại A. Đường cao AH. kẻ HE vuông góc AB, Hf vuông góc AC. Cmr: AH^2= BC.BE.CF
Cho tam giác ABC vuông tại A (AB < AC), có AH là đường cao . Kẻ HE
vuông góc AB tại E, kẻ HF vuông góc AC tại Ƒ
A) Chứng minh tứ giác AEHF là hình chữ nhật
b) lấy điểm M kẻ đường thẳng song song AH , đường thẳng này cắt tia HF tại N . Chứng minh
tứ giấc EFMH là hình bình hành
c) một mảnh đất hình chữ nhật có chiều dài là (2x+3)² mét vuông và chiều rộng là
(2x-1)² . Biết chiều dài hơn chiều rộng là 36 mét . Tính chu vi mảnh đất
Cho (O) ngoại tiếp tam giác nhọn ABC. Vẽ đường cao AH (H thuộc BC). Vẽ HE vuông góc AB, HF vuông góc AC. Gọi M là giao điểm của BF và HE, N là giao điểm của HF và CE. Chứng minh: MN \(//\)BC
xét tam giác AEF zà tam giác ACB có
góc A chung
góc AEF= góc AHF = góc C
=> tam gác AEF ~ tam giác ACB(gg
\(\frac{AE}{AC}=\frac{AF}{AB}\)
=> tam giác AEC ~ tam giác AFB(c.g.c)
=> góc ABF = góc ACE
mà \(\hept{\begin{cases}\widehat{ABF}+\widehat{EMB}=90^0\\ACE+\widehat{CNF}=90^0\end{cases}}\)
=> góc EMB = góc CNF
lại có \(\hept{\begin{cases}\widehat{EMB}=\widehat{HMF(}đđ)\\\widehat{CNF}=\widehat{HNE}\left(dđ\right)\end{cases}}\)
=> góc HMF = góc HNE
=> tam giác HMF ~ tam giác HNE (gg)
=> \(\frac{HM}{HN}=\frac{HF}{HE}\)
=> tam giác HMN ~ tam giác HFE (gg)
=> góc HEF = góc HNM
mà góc HEF= góc HAC = góc FHC
=> góc HNM = góc FHC
=> MN//BC
Cho tam giác abc vuông tại a,bc=5cm,°C=30° a)giải tam giác vuông ABC. b)tính đường cao AH c)kẻ HE vuông góc AB TẠI E VÀ HF VUÔNG GÓC AC TẠI F CM :AH\3=BE.CF.BC cần gấp
Câu 15:
a: ĐKXĐ: x>=0; x<>1