tinh nhanh
(1-1/2)(1-1/3)(1-1/4)............................... (1-1/2016)(1-1/2017)
tinh M=2017+2017/1+2+2017/1+2+3+...+2017/1+2+3+...+2016
1^2-2^2+3^2-4^2 ... -2016^2+2017^2 tinh nhanh nha
Đặt A=1^2-2^2+......-2016^2+2017^2
-A=2^2-1^2+........+2016^2-2015^2
ÁP dụng A^2-B^2=(A+B)(A-B)
sau đó bạn sẽ tính được A
Tinh :
B=2017 + 2017/1+2 + 2017/1+2+3 + 2017/1+2+3+4 +....+2017/1+2+3+...+2016
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
Tính nhanh: 1/1*2+1/2*3+1/3*4+...+1/2016*2017
=1/1-1/2+1/2-1/3+....+1/2016-1/2017
=1/1-1/2017=2016/2017
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ........+ 1/2016 - 1/2017
= 1 - 1/2017
= 2016/2017
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2016\times2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
Học tốt #
Tính nhanh tổng:
1/2:3+1/3:4+...1/2016:2017
=1/2 - 1/3 +1/3 - 1/4 +...+1/2016 - 1/2017
=1/2 - 1/2017
=...
1/2:3+1/3:4+1/4:5+...1/2016:2017
1/2.1/3+1/3.1/4+1/4.1/5+...1/2016.1/2017
1/2.3+1/3.4+1/4.5+...1/2016.2017
1/2-1/3+1/3-1/4+1/4-1/5+...1/2016-1/2017
=1/2-1/2017
=2017/4034-2/4034
=2015/4034
A= ( 1/2017+ 2/2016+ 3/2015+...+ 2015/3+ 2016/2+ 2017) : ( 1/2+1/3+1/4+...+1/2017+1/2018)
tính m=2016+2016/2+2015/3+2014/4+...+1/2017/1/2+1/3+1/4+...+1/2017
1.Tính nhanh tổng sau:
\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)
2. So sánh A và B, biết:
\(A=\frac{2016^{2017}}{2016^{2017}-3}\)
\(B=\frac{2017^{2019}+1}{2017^{2019}-1}\)
1. Bài giải:
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)
\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)
Vậy \(A=\frac{1001}{501}\)