tìm n thuộc N để cac số sau đều là số nguyên tó
n+1 ;n+3;n+7;n+9 ;n+13 ;n+15
Tìm n thuộc N nhỏ nhất để các số sau đều là số nguyên tố
n+1 ; n+3 ; n+7 ; n+9
n+1 ; n+3 ; n+7 ; n+9
Vậy n = 4
Chúc bạn học tốt!!!
Tìm n thuộc N để: một số khi viết ra hệ thập phân gồm n-1 chữ số 1 và 1 chữ số 7 đều là số nguyên tố
tìm n thuộc n để n+1,n+3,n+7,n+9,n+13,n+15 đều là số nguyên tố
nếu n=0 thì n+1=1(loại) vì 1 ko phải là số nguyên tố => n ko thể là =1
nếu n=1 thì ta có:n+1=2 ; n+3 =4(loại) vì 4 ko phải là số nguyên tố=> n ko thể =1
nếu n=2 thì ta có: n+1=3 ; n+3=5 ; n=7 =10( loại) vì 10 ko phải là số nguyên tố => n ko thể =2
nếu n=3 thì ta có: n+1=4(loại) vì 4 ko phải là số nguyên tố=> n ko thể là 3
nếu n=4 thì ta có: n+1=5 ; n+3=7 ; n+9=13; n+13=17 ; n+15=19 => n=4
Thử n đến 3 ko thỏa mãn!
*) n=4 thì đúng.
*) Xét n>4 thì các số đó đều lớn hơn 5.
Xét số dư khi chia n cho 5:
+) Dư 1 thì n+9⋮5n+9⋮5
+) Dư 2 thì n+13⋮5n+13⋮5
+) Dư 3 thì n+7⋮5n+7⋮5
+) Dư 4 thì n+1⋮5n+1⋮5
+) Dư 0 thì n+15⋮5n+15⋮5
Ko thỏa mãn TH nào!!!
Vậy n=4n=4
Thử n đến 3 ko thỏa mãn!
*) n=4 thì đúng.
*) Xét n>4 thì các số đó đều lớn hơn 5.
Xét số dư khi chia n cho 5:
+) Dư 1 thì n+9⋮5n+9⋮5
+) Dư 2 thì n+13⋮5n+13⋮5
+) Dư 3 thì n+7⋮5n+7⋮5
+) Dư 4 thì n+1⋮5n+1⋮5
+) Dư 0 thì n+15⋮5n+15⋮5
Ko thỏa mãn TH nào!!!
Vậy n=4
tìm n thuộc n để n+1,n+3,n+7,n+9,n+13,n+15 đều là số nguyên tố
Câu 1: tìm 2016 số tự nhiên liên tiếp đều là hợp số
Câu 2: tìm n thuộc N để A=n2-3n là số nguyên tố
tìm n thuộc p để n+10, n+12 đều là số nguyên tố
Vì n là số nguyên tố nên n \(\ge\) 2
Khi p=2 thì n+10= 12 => Hợp số (loại)
p=2 thì n+12= 14 => Hợp số (loại)
Khi p=3 thì n+10= 13 => Số nguyên tố (Nhận)
p=3 thì n+12= 15 => Số nguyên tố (Nhận)
Khi p>3 thì p có dạng 3k+1;3k+2
Với p=3k+1 thì n+12=3k+...
Bạn xem coi đề có sai không nha tại vì giải tới đây ko ra rồi
Tìm n thuộc N để các số sau là số nguyên tố 1 . C = ( n - 2 ) (n +4 )
Do n-2<n+4 nên C là số nguyên tố khi và chỉ khi:
\(\left\{{}\begin{matrix}n-2=1\\n+4\text{ là số nguyên tố}\end{matrix}\right.\)
\(\Rightarrow n=3\)
Tìm n thuộc N để cả 3 phân số sau đều là số nguyên:\(\frac{15}{n};\frac{12}{n+2};\frac{6}{2n+5}\)
Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .
Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán.
B1:
a) Chứng tỏ rằng 5n+7 và 15n+20(n thuộc N) là 2 số nguyên tố cùng nhau?
b) Tìm số tự nhiên n để 5n+3 chia hết cho 6?
B2:
Tìm số tự nhiên n nhỏ nhất để các số sau đều là số nguyên tố:
n+1;n+3;n+7;n+9
P/S:Trình bày bài giải giúp mình nhé