Tứ giác ABCD có góc B + góc D = 180 độ, CB = CD. Chứng minh AC là tia phân giác của góc BAD.
cho tứ giác lồi ABCD có góc B=D = 180 độ, CB=CD. Chứng minh rằng AC là tia phân giác góc BAD
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
Cho tứ giác lồi ABCD có góc B+D=180, CB=CD. Chứng minh AC là tia phân giác của góc BAD
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
cho tứ giác ABCD có góc B + góc D= 180 độ, AC là tia phân giác của góc A. Chứng minh CB=CD
Cho tứ giác ABCD có CB = CD, góc B + D = 180 độ. Chứng minh AC là tia phân giác của góc A
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Cho tứ giác ABCD, có góc B+ góc D= 180 độ. AC là tia phân giác của góc A. Chứng minh CB=CD
Nếu được thì giúp em vẽ hình với ạ
Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)
\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))
Do đó: \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(Hai cạnh bên)
mà DA=BC(ABCD là hình thang cân)
nên CB=CD(đpcm)
cho tứ giác giác lồi ABCD có B+D=180,CB=CD. chứng minh ragwf Ac là tia phan giác góc BAD.
Bài 12. Cho tứ giác lồi ABCD có B+D = 1800, CB = CD. Chứng minh AC là tia phân giác của góc BAD
Đáp án:
1/ Lấy E thuộc tia đối tia BA sao cho BE = AD. Ta có góc ABC + góc CBE = 180độ (kề bù). Mà góc ABC + góc CDA = 180độ (gt) ⇒ góc CBE = góc CDA (cùng = 180độ – góc ABC).
Xét ΔADC và ΔEBC có: + AD = BE (cách kẻ)
+ Góc CDA = góc CBE (c/m trên)
+ CD = BC (gt) ⇒ ΔADC = ΔEBC(c.g.c)
⇒ Góc DAC = góc BEC (1) và AC = CE. Do AC = EC ⇒ ΔACE cân tại C
⇒ góc CAE = góc CEA = góc CEB (2). Từ (1) và (2) ⇒ góc CAB = góc DAC ⇒ đpcm
Giải thích các bước giải:
tứ giác ABCD có góc B = 110 độ, góc D = 70 độ, AC là tia phân giác của góc A. Chứng minh CB=CD
góc B+góc D=180 độ
=>ABCD là tứ giác nội tiếp
=>góc CBD=góc CAD và góc CDB=góc CAB
mà góc CAD=góc CAB
nên góc CBD=góc CDB
=>CB=CD