Bài: Tìm giá trị lớn nhất, nêu rõ dấu bằng xảy ra khi nào?
a) \(A=\left(x+1\right)^2+5\)
b) \(M=\left(2x-6\right)-7\)
c) \(N=\frac{8}{\left(x-2\right)^2+4}\)
- Làm lẹ hộ bé Bi nha >.<
_ Giải gấp hộ nhé!!
Bài 1: Tìm giá trị lớn nhất :
a) A = \(\left|6-2x\right|-2\left|4+x\right|\)
b) B = \(12-\left|3x+2015\right|-\left|-3\right|\)
c) C = \(\frac{5}{2}-\left|3x-\frac{7}{6}\right|\)
d) D = \(\left|x-3,2\right|-1,11\)
Bài 2: Tìm giá trị nhỏ nhất :
a) A = \(\left|2008^{2007}x+2010\right|\)
b) B = \(\left|2x-13\right|-\frac{7}{2}\)
c) C = \(-21,5+\left|\left(5x+12\right)^2\right|\)
cho hàm số \(y=\frac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5}{x^2+3x-4}\)
a, tìm tập xác định của hàm số
b, chứng minh y<=3. chỉ rõ dấu bằng xảy ra khi nào
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
giúp mk với nha
tìm giá trị lớn nhất của biểu thức
B=\(\frac{\left|2x+7\right|+13}{2\left|2y+7\right|+6}\)
C=\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
1/ Cho x + y = 2
Chứng minh xy nhỏ hơn hoặc bằng 1.
2/
a) Tìm giá trị lớn nhất của \(A=3-\left(\frac{4}{9}x+\frac{2}{15}\right)^6.\)
b) Tìm giá trị lớn nhất của \(B=2,25-\frac{1}{4}\left(1+2x\right)^2.\)
c) tìm giá trị lớn nhất của \(C=\frac{1}{3+\frac{1}{2}\left(2x-3\right)^4}.\)
Mik đg cần gấp ai làm nhanh và đúng nhất mik sẽ tik cho 3 cái!
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
bài1: tìm x:
a)\(8< 2^x< =2^9.2^5\)
b)\(27< 81^3:3^x< 243\)
c)\(\left(\frac{2}{5}\right)^x\left(\frac{5}{2}\right)^{-3}.\left(\frac{-2}{5}\right)^2\)
d)\(\left(5x+1\right)^2=\frac{36}{49}\)
e)\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\) f)\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)(n thuộc N)
bài 2:tìm x,y biết:
a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)
b)\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}< =6\)
c)\(\left(x-7\right)^{x+1}-\left(x-y\right)^{x+11}=0\)
bài 3:tìm giá trị nhỏ nhất:
\(A=\left(2x+\frac{1}{3}\right)^2-1\)
tìm Gía trị lớn nhất :\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
baif4: tìm x,y:
\(x.\left(x-y\right)=\frac{1}{10}\) \(\)
giúp mình với nhé
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
Tìm giá trị lớn nhất hay giá trị nhỏ nhất của
\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\)
\(B=\frac{6}{5}-\left|2x+4\right|\)
=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)
A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)
=>\(\left|x-\frac{1}{2}\right|=0\)
=>\(x-\frac{1}{2}=0\)
=>x=\(\frac{1}{2}\)
Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)
Vì \(\left|2x+4\right|\ge0\)=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)
B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)
<=>|2x+4|=0
<=>2x+4=0
<=>2x=-4
<=>x=-2
Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2
Bài 1 )
Tìm giá trị lớn nhất của : \(A=\frac{2016}{x^2-2x+2017}\)
Bài 2 :
Tìm giá trị nhỏ nhất của biểu thức sau :
a ) \(\frac{20}{6x-9x^2-21}\)
b ) \(\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)
Tìm các giá trị lớn nhất của biểu thức:
a. \(E=\frac{4}{5}+\frac{20}{\left|3x-5\right|+\left|4y+5\right|+8}\)
b. \(F=-6+\frac{24}{2.\left|x-2y\right|+3.\left|2x+1\right|+6}\)