Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quảng Thị Yến Trang
Xem chi tiết
Vũ Quang Lê
Xem chi tiết
Thiên Kim
Xem chi tiết
Ánh Tuyết
16 tháng 3 2020 lúc 14:48

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

Khách vãng lai đã xóa
Nguyễn Thị Bích Thảo
Xem chi tiết
trần duy anh
Xem chi tiết
Giản Nguyên
22 tháng 4 2018 lúc 14:56

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

Phạm Nguyễn Liên Phương
Xem chi tiết
Nguyễn Ngọc Lan Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 23:45

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

Phuong Ho
Xem chi tiết
.....
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 14:31

a: Sửa đề: ΔABC vuông tại A

BC=căn 9^2+12^2=15cm

b: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

c: ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//CD

=>CD vuông góc CA

=>ΔCDA vuông tại C