\(\frac{2^4+4}{4^4+4}\frac{6^4+4}{8^4+4}...\frac{18^4+4}{20^4+4}\)
tính giá trị biểu thức trên :3
Tính giá trị của \(\frac{2^4+4}{4^4+4}\cdot\frac{6^4+4}{8^4+4}\cdot...\cdot\frac{18^4+4}{20^4+4}\)
tính giá trị của biểu thức
\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)....\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)....\left(20^4+\frac{1}{4}\right)}\)
tính giá trị của biểu thức A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)
bài này hình như có trong sách Nâng cao phát triển toán 8?
tính giá trị của biểu thức A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right).......\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)........\left(20^4+\frac{1}{4}\right)}\)
Nhân từng thừa số ở cả tử và mẫu với 16 là ra ý mà
TÍnh giá trị biểu thức
A=\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath
Tính giá trị biểu thức
A=\(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)..........\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right).........\left(30^4+\frac{1}{4}\right)}\)
Sài tích xích ma cho nhanh nhá!!!
công thức chung phần tử là (2x+1)^4+1/4. cho x chạy từ 0 đến 14
công thức chung phần mẫu là (2x)^4+1/4. cho x chạy từ 1 đến 15
để ko tràn màn hình đặt tích xích ma lên phân số lun.
A=1/1861.
sài vinacal nhanh hơn. casio nó cho ăn bơ 2 phút đấy. ahihi:))
tính giá trị của biểu thức \(\frac{\left(\frac{1}{4}+1\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath
Bài này tôi đang ôn trong quyển học sinh giỏi nè
Tính giá trị của biểu thức:
\(N=\frac{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right).\left(6^4+\frac{1}{4}\right)...\left(2008^4+\frac{1}{4}\right)}{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).\left(5^4+\frac{1}{4}\right)...\left(2007^4+\frac{1}{4}\right)}\)
Với mọi n thuộc N* ta có :
\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2+n+\frac{1}{2}\right)\left(n^2-n+\frac{1}{2}\right)\)
\(\Rightarrow N=\frac{\left(2^2+2+\frac{1}{2}\right)\left(2^2-2+\frac{1}{2}\right)...\left(2008^2+2008+\frac{1}{2}\right)\left(2008^2-2008+\frac{1}{2}\right)}{\left(1^2+1+\frac{1}{2}\right)\left(1^2-1+\frac{1}{2}\right)...\left(2007^2+2007+\frac{1}{2}\right)\left(2007^2-2007+\frac{1}{2}\right)}\)
\(=\frac{\left(2.3+\frac{1}{2}\right)\left(1.2+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)...\left(2008.2009+\frac{1}{2}\right)}{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)...\left(2007.2008+\frac{1}{2}\right)}\)
\(=\frac{2008.2009+\frac{1}{2}}{\frac{1}{2}}=8068145\)
Tính giá trị của biểu thức
\(\frac{\left(1^4+\frac{1}{4}\right)+\left(3^4+\frac{1}{4}\right)+\left(4^4+\frac{1}{4}\right)+...+\left(2013^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)+\left(4^4+\frac{1}{4}\right)+\left(6^4+\frac{1}{4}\right)+...+\left(2014^4+\frac{1}{4}\right)}\)