Cho bốn số nguyên thỏa mãn điều kiện: a+b=c+d và ab+1=cd. Chứng minh: c=d
Cho 4 số nguyên thỏa mãn điều kiện a+b=c+d và ab+1=cd
Chứng minh c=d
Ta có: a+b=c+d
\(\Leftrightarrow a=c+d-b\)
Thay vào : ab+1=cd, ta được:
\(\left(c+d-b\right)b+1=cd\)
\(\Leftrightarrow bc+bd-b^2+1-cd=0\)
\(\Leftrightarrow\left(bc-b^2\right)+\left(bd-cd\right)=-1\)
\(\Leftrightarrow-b\left(b-c\right)+d\left(b-c\right)=-1\)
\(\Leftrightarrow\left(b-c\right)\left(d-b\right)=-1\)
Vì b,c,d là số nguyên nên suy ra: b-c=b-d=1 hoặc b-c=b-d=-1
Vậy: c=d
Cho các số nguyên a,b,c,d thỏa mãn các điều kiện :
a+b=c+d và ab +1=cd
Chứng tỏ rằng c=d
Ta có :a+b=c+d
\(\Rightarrow\) a=c+d-b
Thay vào ab+1=cd
\(\Rightarrow\) (c+d-b)*b+1=cd
\(\Leftrightarrow\)cb+db-cd+1-b2=0
\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0
\(\Leftrightarrow\) (b-d)(c-b)=-1
Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 trường hợp
TH1: b-d=-1 và c-b=1
\(\Leftrightarrow\) d=b+1 và c=b+1
\(\Rightarrow\) c=d (1)
TH2: b-d=1 và c-b=-1
\(\Leftrightarrow\) d=b-1 và c=b-1
\(\Rightarrow\) c=d (2)
Vậy từ (1) và (2) ta có c=d.
Cho các số nguyên a,b,c,d thoả mãn điều kiện:
a + b = c + d và ab + 1 = cd
Chứng minh c = d
bạn nhấn vào nha
cho các số nguyên a;b;c;d thỏa mãn điều kiện: a+b=c+d và a.b+1=c.d. CMR: c=d
cho các số nguyên a,b,c,d thõa mãn các điều kiện
a+b=c+d và ab+1=cd
chứng minh c=d
\(a=b=c+d\Rightarrow\hept{\begin{cases}b\left(a+b=b\left(c+d\right)\right)\\ab+b^2=bc+bd\end{cases}}\)
Mà : \(ab+1=cd\)
Do đó : \(\left(ab+b^2\right)-\left(ab+1\right)=bc+bd-cd\)
\(\Leftrightarrow ab+b^2-ab-1=bc+bd-cd\)
\(\Leftrightarrow b^2-bc-bd+cd=1\)
\(\Leftrightarrow b\left(b-c\right)-d\left(b-c\right)=1\)
\(\Leftrightarrow\left(b-c\right)\left(b-d\right)=1\)
\(\Leftrightarrow\orbr{\begin{cases}b-c=b-d=1\\b-c=b-d=1\end{cases}}\)
\(\Rightarrow c=d\)
Cho các số nguyên a,b,c,d thỏa mãn các điều kiện
a+b=c+d
ab +1 = cd
chứn minh rằng c=d
Cho các số nguyên a,b,c,d thỏa mãn điều kiện:
a + b = c+d và ab + 1 = cd
CMR: c = d
cho bốn số nguyên dương a, b, c, d thỏa mãn ab=cd. chứng minh rằng a^5+b^5=c^5+d^5 là hợp số
Cho a,b,c,d là các số nguyên và thỏa mãn điều kiện a + b = c + d và a . b + 1 = c . d, chứng minh c = d
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Cho a , b ,c , d thỏa mãn các điều kiện sau a + b = c + d và ab + 1 = cd . Chứng tỏ c = d .