tìm n để ;13n+3 là số chính phương
Cho n-1/n+5(n∈ Z)
a)Tìm n để A là phân số
b). Tìm n để A=-1/2
c)Tìm n để A có giá trị nguyên
d) Tìm n để A là phân số tối giản
e). Tìm giá trị nhỏ nhất của A.
a: Để A là phân số thì n+5<>0
hay n<>-5
b: Để A=-1/2 thì n-1/n+5=-1/2
=>2n-2=-n-5
=>3n=-3
hay n=-1
c: Để A là số nguyên thì \(n-1⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)
Cho biểu thức B = 2n+3/n-1
a) Tìm n để B là phân số
b) Tìm n để B thuộc Z
c) Tìm n để B là phân số tối giản
d) Tìm n để có giái trị lớn nhất
e) Tìm n để có giá trị nhỏ nhất
m) Tìm n để rút gọn được
Cho A=2/n-3
a, tìm n để A=-3/5,-4/7
B, tìm n để A>O,A<2
C,tìm n để A thuộc Z
D, tìm n để A tối giản
E,tìm n để A max
Cho A =n+9/n+2
d) Tìm điều kiện của n để A là phân số.
e) Tìm n để A = 2,4.
f) Tìm số nguyên n để A là số nguyên
d, ĐK:\(n+2\ne0\Leftrightarrow n\ne-2\)
\(e,A=2\\ \Leftrightarrow\dfrac{n+9}{n+2}=2\\ \Rightarrow n+9=2n+4\\ \Leftrightarrow n=5\\ A=4\\ \Leftrightarrow\dfrac{n+9}{n+2}=4\\ \Leftrightarrow n+9=4n+8\\ \Leftrightarrow3n=1\\ \Leftrightarrow n=\dfrac{1}{3}\)
\(f,A\in Z\\ \Rightarrow\dfrac{n+9}{n+2}\in Z\\ \Rightarrow\dfrac{n+2+7}{n+2}\in Z\\ \Rightarrow1+\dfrac{7}{n+2}\in Z\)
Để \(A\in Z\Rightarrow\dfrac{7}{n+2}\in Z\Rightarrow7⋮\left(n+2\right)\Rightarrow n+2\inƯ\left(7\right)\)
Ta có bảng:
n+2 | -7 | -1 | 1 | 7 |
n | -9 | -3 | -1 | 5 |
Vậy \(n\in\left\{-9;-3;-1;5\right\}\)
1. 3/n-5 thuộc N<=> n-5 lớn hơn 0<=>n lớn hơn 5
2. 3/n-5 thuộc Z<=> n-5 khác 0<=> n khác 5
3. 9/2n-3 thuộc Z<=> 2n-3 khác 0<=> 2n khác 3<=> n thuộc Z
A=6n+4/2n-3
a, tìm điều kiện để A là phân số
b, tìm n để A nguyên
c, tìm n để A dương
d, tìm n để A âm
e, tìm n để A là phân số tối giản
Ta có: \(A=\frac{6n-9+13}{2n-3}=\frac{3\left(2n-3\right)+13}{2n-3}\)
Mà: 3 ( 2n - 3 ) chia hết cho 2n - 3
=> 13 chia hết cho 2n - 3 => 2n - 3 E Ư(13) = {1,-1,13,-13}
=> 2n E {4,2,16,-10}
Ta có bảng sau:
2n | 4 | 2 | 16 | -10 |
n | 2 | 1 | 8 | -5 |
A= 11/n +5 ( n thuộc Z )
a) điều kiện để A là phân số
b)tìm ps A biết n=2;8
c) tìm n biết A= 1/2
d)tìm n thuộc Z để A thuộc Z
e)tìm n thuộc Z để A rút gọn được
a) Để A là phân số thì \(n+5\ne0\)
hay \(n\ne-5\)
Cho A = \(\frac{3n+7}{n+1}\)
a) Tìm n để A là phân số
b) Tìm n để A có giá trị là số nguyên
c) Tìm n để A rút gọn được
d) Tìm n để A là phân số tối giản
e) Tìm n để A có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
cho phân số B= -5/n-3 (n thuộc Z )
a, Tìm n để B là phân số
b, tìm n để B là số nguyên
c,tìm n để B là số nguyên dương
d,tìm n để B là số nguyên âm
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.