Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Công Minh Hoàng
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 6 2016 lúc 20:29

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{b-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{c-b+b-a+a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

Thủy Phạm Thanh
Xem chi tiết
Đinh Đức Hùng
27 tháng 11 2017 lúc 13:52

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

\(\frac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

Sao Băng
Xem chi tiết
Lê Nhật Khôi
3 tháng 11 2017 lúc 21:52

Áp dụng hằng đẳng thức mà làm 

Sao Băng
3 tháng 11 2017 lúc 22:00

Hàng đẳng thức nào

Nguyen Thi Phuong Anh
4 tháng 11 2017 lúc 20:27

nhung hdt dang nho do ban

Nguyễn Nguyệt Ánh
Xem chi tiết
bảo ngọc tạ
Xem chi tiết
bảo ngọc tạ
18 tháng 9 2019 lúc 22:05

bỏ số 14 cuối nha mọi ng, mình nhầm

KAl(SO4)2·12H2O
18 tháng 9 2019 lúc 22:34

Tớ giải bừa

\(\left(a-b\right)^2\left(\sqrt{\frac{a+b}{a-b}}+1\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)

\(=\left(a-b\right)^2\left(\sqrt{\frac{a+b}{a-b}}\right)^2-1^2\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=2ab-2b^2\)

ctk_new
22 tháng 9 2019 lúc 13:40

\(\left(a-b\right)^2\left(\sqrt{\frac{a+b}{a-b}}+1\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)

\(=\left(a-b\right)^2\left(\sqrt{\frac{a+b}{a-b}}^2-1\right)\)

\(=\left(a-b\right)^2\left(\left|\frac{a+b}{a-b}\right|-1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)(Vì \(\frac{a+b}{a-b}\)nằm trong dấu căn ban đầu)

\(=\frac{\left(a-b\right)^2\left(a+b\right)}{a-b}-\left(a-b\right)^2\)

\(=a^2-b^2-a^2+2ab-b^2\)

\(=2ab-2b^2\)

Nguyễn Diệu Hoa
Xem chi tiết
Đặng Thanh Thủy
11 tháng 6 2017 lúc 16:08

a)  Điều kiện :  \(a\ne-b;b\ne1;a\ne-1\)

\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+a^2b+a-b}{1+a}\)

\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)

\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)

P = a + ab - b

b)

P = 3

<=>  a + ab - b = 3

<=>  a(b+1) - (b+1) +1 - 3 = 0

<=>   (b+1)(a-1)  = 2

Ta có bảng sau với a, b nguyên

b+112-1-2
a-121-2-1
b01-2-3
a32-10
so với đk loạiloại 


Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}

HÀ Hanna
Xem chi tiết
Trương Mỹ Hoa
Xem chi tiết