Cho a,b là hai số nguyên, b > 0
Hãy so sánh hai số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+1}{b+1}\)
Cho a, b, c là những số nguyên, b > 0. hãy so sánh hai số hữu tỉ \(\frac{a}{b}\)và c
xảy ra 3 trường hợp:
1)a/b>c
2)a/b=c
3)a/b<c
1. Cho số hữu tỉ x=a-5\a (a khác 0). Với giá trị nguyên nào của a thì x là số nguyên?
2. Cho a, b thuộc Z; b>0; n thuộc N sao. Hãy so sánh hai số hữu tỉ\(\frac{a}{b}\) và\(\frac{a+n}{b+n}\)
a, Để x là số nguyên
=> a - 5 chia hét cho a
Vì a chia hết cho a
=> -5 chia hết cho a
=> a \(\in\){1; -1; 5; -5}
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> an = bn
=> ab+an = ab+bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> an > bn
=> ab + an > ab + bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> an < bn
=> ab + an < ab + bn
=> \(\frac{a}{b}
Cho a, b \(\in Z\) và b> 0. So sánh hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)
Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\), ta đi so sánh hai số \(a\left(b+1\right)\)và \(b\left(a+1\right)\).
Xét hiệu:
\(a\left(b+1\right)-b\left(a+1\right)=ab+a-\left(ab+b\right)=a-b\)
Ta có 3 trường hợp, với điều kiện b > 0:
Trường hợp 1: Nếu \(a-b=0\Leftrightarrow a=b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)=0\Leftrightarrow a\left(b+1\right)=b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}=\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}=\frac{a+1}{b+1}\)
Trường hợp 2: Nếu \(a-b< 0\Leftrightarrow a< b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)< 0\Leftrightarrow a\left(b+1\right)< b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}< \frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Trường hợp 3: Nếu \(a-b>0\Leftrightarrow a>b\)thì:
\(a\left(b+1\right)-b\left(a+1\right)>0\Leftrightarrow a\left(b+1\right)>b\left(a+1\right)\)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(a+1\right)}>\frac{b\left(a+1\right)}{a\left(b+1\right)}\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Hãy so sánh hai số hữu tỉ a/b và a+1/b+1 biết a và b lá số nguyên và b >0
Ta có: \(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{b.\left(b+1\right)}\)
\(\frac{a+1}{b+1}=\frac{b.\left(a+1\right)}{b.\left(b+1\right)}=\frac{ab+b}{b.\left(b+1\right)}\)
Xét a>b
=>\(\frac{ab+a}{b.\left(b+1\right)}>\frac{ab+b}{b.\left(b+1\right)}\)
=>\(\frac{a}{b}>\frac{a+1}{b+1}\)
Xét a<b
=>\(\frac{ab+a}{b.\left(b+1\right)}
Cho A = (\(\frac{1}{2^2}\)-1)(\(\frac{1}{3^2}\)-1)(\(\frac{1}{4^2}\)-1)...(\(\frac{1}{2013^2}\)-1)(\(\frac{1}{2014^2}\)-1) B = -\(\frac{1}{2}\).So sánh A và B
Cho B =\(\frac{a-3}{10-a}\)với a e Z
+ Vs những số nguyên a nào thì B là số hữu tỉ dương
+ Vs những số nguyên a nào thì B là số hữu tỉ âm
Cho a,b thuộc Z, b > 0. so sánh hai số hữu tỉ \(\frac{a}{b}\)và\(\frac{a+2001}{b+2001}\)
Quy đồng mẫu số:
\(\frac{a}{b}\)= \(\frac{a\left(b+2001\right)}{b\left(b+2001\right)}\)=\(\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}\)=\(\frac{\left(a+2001\right)b}{\left(b+2001\right)b}\)=\(\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của 2 phân số trên dương.Chỉ cần so sánh tử số
so sánh ab+2001a vớiab+2001b
-Nếu a<b =>Tử số phân số thứ nhất < tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
-Nếu a=b => 2 phân số bằng 1
-Nếu a>b => tử số phân số thứ nhất lớn hơn tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
Ta có:
( a + 2001 ) .b = a.b + b.2001 ( 1 )
( b . 2001 ) . a = a.b + a.2001 ( 2 )
Xét 3 trường hợp :
TH1: a=b
Từ ( 1 ) và ( 2 ) => b.2001 = a.2001 => a.b + b.2001 = a.b + a.2001 => ( a + 2001 ) .b = ( b + 2001 ) .a => \(\frac{a}{b}\)= \(\frac{a+2001}{b+2001}\)
TH2: a<b
Từ ( 1 ) và ( 2 ) => b.2001 > a.2001 => a.b + b.2001 > a.b + a.2001 => ( a + 2001 ) .b > ( b + 2001 ) .a => \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
TH3: a>b
Từ ( 1 ) và ( 2 ) => b.2001 < a.2001 => a.b + b.2001 < a.b + a.2001 => ( a + 2001 ) .b < ( b + 2001 ) .a => \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
ủng hộ nhé
cho a,b thuộc Z, b >0. So sánh hai số hữu tỉ \(\frac{a}{b}\) và\(\frac{a+2001}{b+2001}\)
\(\frac{a}{b}-\frac{a+2001}{b+2001}=\frac{a\left(b+2001\right)-b\left(a+2001\right)}{b\left(b+2001\right)}=\frac{2001\left(a-b\right)}{b\left(b+2001\right)}.\)
Ta có \(b>0\Rightarrow b\left(b+2001\right)>0\)
+ Nếu \(a>b\Rightarrow2001\left(a-b\right)>0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}>0\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
+ Nếu \(a< b\Rightarrow2001\left(a-b\right)< 0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
cho a,b thuộc Z, b>0 .So sánh hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{a+2001}{b+2001}\)
Xét: a(b+2001)= b(a+2001)
ab+2001a=ab+2001b
Xảy ra các trường hợp:
+) Nếu a>b => ab+2001a > ab+2001b
=> a/b > a+2001/b+2001
+) Nếu a<b => ab+2001a < ab+2001b
=> a/b > a+2001/b+2001
+) Nếu a=b => ab+ 2001a = ab + 2001b
=> a/b = a+2001/b+2001
Cho a,b là hai số hữu tỉ dương.
So sánh \(\frac{a}{b}\)và \(\frac{a+2}{b+2}\). Cho 2 ví dụ cụ thể
GIúp mình với
Xét:
+) a,<b\(\Rightarrow ab+2a< ab+2b\)
\(\Leftrightarrow a\left(b+2\right)< b\left(a+2\right)\)
\(\frac{\Rightarrow a}{b}< \frac{a+2}{b+2}\)
Vd :
a=2 , b=3 thì:
\(\frac{2}{3}< \frac{2+2}{3+2}=\frac{4}{5}\)
Tương tự xét với a> b; a=b