Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
EXOplanet
Xem chi tiết
Yoonaddict
Xem chi tiết
Nguyen Duc Giang
Xem chi tiết
nguyenthithienkim
Xem chi tiết
Lương Xuân Hiệp
2 tháng 1 2016 lúc 9:14

1.Có 6 số tự nhieenlaf bội của 25 đồng thời là ước của 300

Lương Xuân Hiệp
2 tháng 1 2016 lúc 9:21

1.Có 6 STN là bội của 25 đồng thời là ước của 300.                                                                                                                                   2.Số nguyên tố lớn nhất có dạng *31 là 631                                                                                                                                               3.33                                                                                                                                                                                                        4.2215 nha                                                                                                                                                                                               (ai thấy đúng thì tích cho mik nha)

              

bong
Xem chi tiết
doreamon
Xem chi tiết
huyền trang
17 tháng 1 2017 lúc 8:07

a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b 
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên) 
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên 
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b

Pham Ngoc Khương
Xem chi tiết
Marissa Briana
26 tháng 1 2018 lúc 20:30

tận cùng là 25

Đào Phương Ánh Hòa
Xem chi tiết
nguyễn minh hiếu
4 tháng 1 2017 lúc 21:28

bỏ chữ 0 tận cùng thì giảm 10 lần,thêm 1 chữ số 0 vào bên phải thì gấp 10 lần.coi số sau khi bớt là 1 phần số đó là 10 phần số sau khi thêm là 100 phần ta có tổng số phần là:1 +10+100=111 phần.số sau khi bớt là :36963 :111=333.suy ra a là 3330

Dung Viet Nguyen
Xem chi tiết
GV
15 tháng 11 2017 lúc 8:13

a) Ta có \(8^2=64\)

              \(8^4=8^2=64^2=...6\) (tận cùng là 6)

=>        \(\left(8^4\right)^n=\left(...6\right)^n=...6\)

Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)

Tương tự: \(\left(2^4\right)^n=16^n=...6\)

  => \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)

Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10

b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\) 

c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3

               \(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)

Dung Viet Nguyen
17 tháng 11 2017 lúc 12:07

jEm có cách khác cô ạ !

Bài 1 .

Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :

8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,

2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .

Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.

Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :

- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;

- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;

- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .

Bài 2 .

Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :

2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76

Vậy hai chữ số tận cùng của 2100 là 76.

Bài 3 .

Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :

71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343

= ( ...01 ) . 343 = ...43

Vậy 71991 có hai chữ số tận cùng là 43 .

Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :

- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;

- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;

- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;

- Số 26n ( n > 1 ) có tận cùng bằng 76.