CHÚNG TỎ RẰNG :
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+..........+\frac{1}{149}+\frac{1}{150}>\frac{1}{3}\)
Chứng minh:\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}>\frac{1}{3}\)
Chứng tỏ rằng \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.........+\frac{1}{150}>\frac{1}{3}\)
Ta thấy tổng trên có 50 số hạng .
Ta có:
1/101>1/150
1/102>1/150
...
1/149>1/150
1/150=1/150
=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150
---50 số hạng 1/150-------
=>1/101+1/102+...+1/149+1/150>1/150.50
=>1/101+1/102+...+1/149+1/150>50/150
=>1/101+1/102+...+1/149+1/150>1/3
em lạy chị Nguyễn Trà My cho em **** đi mà
ta có: 1/101>1/150
1/102>1/150
...................
1/150=1/150
=> 1/101+1/102+1/103+...+1/150>1/150+1/150+1/150+...+1/150
_tổng 1/150 có 50 số hạng_
=>1/101+1/102+1/103+...+1/150>1/150.50
=>1/101+1/102+1/103+...+1/150>50/150
=>1/101+1/102+1/103+...+1/150>1/3
chúng minh rằng :
\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+.....+\(\frac{1}{150}\)>\(\frac{1}{3}\)
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)(50 phân số)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\)(50 phân số)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50\)
=> \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{3}\)(Đpcm)
Hãy chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Ta có :
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}=VP\left(đpcm\right)\)
Xét :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
Thêm \(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\)vào mỗi vế ta có
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\RightarrowĐPCM\)
CHỨNG TỎ:
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{149}+\frac{1}{150}\ge\frac{1}{3}\)
CHÚ Ý:Cái dấu lớn hơn các bạn đừng có tính cái dấu bằng ở dưới nhé
Ta có:
1/101 + 1/102 + ... + 1/149 + 1/150 > 1/150 + 1/150 + ... + 1/150 + 1/150
50 phân số 1/150
> 50.1/150
> 1/3
=> đpcm
ta có
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};....;\frac{1}{150}=\frac{1}{150}\)
=>tổng>\(\frac{1}{150}.50=\frac{1}{3}\)
=>đpcm
RÚT GỌN :
\(\frac{3.13-13.18}{15.40-80}\)
\(\frac{2929-101}{2.1919+404}\)
CHỨNG TỎ RẰNG :
\(\frac{1}{101}+\frac{1}{102}+........+\frac{1}{149}+\frac{1}{150}>\frac{1}{3}\)
TÍNH HỢP LÍ :
\(B=\frac{5}{13}+\frac{-5}{7}-\frac{20}{41}+\frac{8}{13}+\frac{-21}{41}\)
RÚT GỌN:
\(\frac{3.13-13.18}{15.40-80}=\frac{13.\left(3-18\right)}{15.40-40.2}=\frac{13.\left(-15\right)}{40\left(15-2\right)}=\frac{13.\left(-15\right)}{40.13}=-\frac{15}{40}=-\frac{3}{8}\)
CHỨNG MINH:
Ta thấy \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150}\)
=>\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.\left(150-101+1\right)=\frac{1}{150}.50=\frac{50}{150}=\frac{1}{3}\)(đpcm)
TÍNH HỢP LÝ:
B=\(\frac{5}{13}+\frac{-5}{7}-\frac{20}{41}+\frac{8}{13}+\frac{-21}{41}=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-21}{41}-\frac{20}{41}\right)+\frac{-5}{7}=1+\left(-1\right)+\frac{-5}{7}=0+\frac{-5}{7}=\frac{-5}{7}\)
\(Cho A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+\frac{1}{104}+.....+\frac{1}{200}\). Chứng tỏ: \(A>\frac{7}{12}\)
Tách A thành 2 nhóm A1 , A2
A1 = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
A2 = \(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\)
\(\Rightarrow\)A = A1 + A2 > \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Chứng minh rằng: \(C=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{7}{12}\)
Chứng tỏ rằng\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)