1.Tổng các số của số tự nhiên a kí hiệu là S (a) .C/m rằng nếu S (a) =S (2a) thì a chia hết cho 9
Tổng các chữ số của số tự nhiên a được kí hiệu là S(a). Chứng minh rằng nếu S(a)=S(2a) thì a chia hết cho 9.
Tổng các chữ số của số tự nhiên a kí hiệu S(a). Chứng tỏ rằng nếu S(a) = S(2a) thì a chia hết cho 9
Lời giải:
Ta thấy với $a$ là số tự nhiên bất kỳ thì $a$ và $S(a)$ luôn có cùng số dư khi chia cho 9 nên:
$a-S(a)\vdots 9$
Tương tự với số tự nhiên $2a$ cũng vậy, $2a-S(2a)\vdots 9$
Suy ra:
$(2a-S(2a))-(a-S(a))\vdots 9$
Hay $a-(S(2a)-S(a))\vdots 9$
Hay $a\vdots 9$
tổng các chữ số của số tự nhiên a kí hiệu là S(a). Chứng tỏ rằng S(a)=S(2a) thì a chia hết cho 9
2a và a có tổng các chữ số bằng nhau
2a; a có cùng số dư với tổng các chữ số của chúng khi chia cho 9
=> (2a - a) chia hết cho 9
=> a chia hết cho 9
Tổng các chữ số của số tự nhiên a kí hiệu là S(a).Chứng minh rằngS(a)=S(2a) thì a chia hết cho 9.
1.Tìm số tự nhiên có 3 chữ số abc sao cho abc=n2-1 và cba=(n-2)2
2.Tính tổng các chữ số của số tự nhiên a kí hiệu là S(a) . Chứng minh rằng nếu S(a)=S(2a) thì a chia hết cho 9
Cố gắng giúp tớ nhé nhất là câu 1 ấy!!!!!!!!!!!!!!!!!!!!!
1.
ta có : abc=100.a+10.b+c=n2-1
cba=100.c+10.b+a= [n-2]2=n2-4.n+4
=>99.[a-c]=4.n- 5
=>4.n -5 chia hết cho 9
vì 100\(\le\) abc\(\le\) 999
100\(\le\) n2-1\(\le\)999 => 101\(\le\) n2\(\le\) 1000 =>11 \(\le\) 31 => 39\(\le\) 4.n -5 \(\le\) 119
vì 4n-5 chia hết cho 99 nên 4n-5 =99 => n=29 => abc=675
Giả sử S(a) là tổng các chữ số của số tự nhiên a. CMR:
a. a - S(a) chia hết cho 9.
b. Nếu S(a) = S(2a) thì a chia hết cho 9. Điều ngược lại có đúng không?
Ai giải được thì tớ tặng 100000000000000000000000000000000000000000000000000000 tick
Giả sử S(a) là tổng các chữ số của số tự nhiên a. CMR:
a. a - S(a) chia hết cho 9.
b. Nếu S(a) = S(2a) thì a chia hết cho 9. Điều ngược lại có đúng không?
Ai nhanh mình tick cho (cả cách giải nha)
Câu 1: Kí hiệu S(n) là tổng các chữ số tự nhiên n . Hỏi n - S(n) có chia hết cho 3 không ?
Câu 2: Cho P và P + 4 là các số nguyên tố lớn hớn 3
Chứng tỏ rằng P + 8 là hợp số .
Câu 3:a, Tìm a thuộc N biết : 6A + 13 chia hết cho 2a + 1
b, Tìm n để (n+ 10). ( n + 21 ) = 124689
c, Tìm các chữ số a,b để aabb là số chính phương .
ai giải đúng mình tích cho ạ !!!!!!!
P > 3 => P = 3k + 1 hoặc P = 3k + 2 (k thuộc N) (vì P là số nguyên tố)
+) P = 3k + 1 => P + 8 = 3k + 9 chia hết cho 3 => P + 8 là hợp số
+) P = 3k + 2 => P + 4 = 3k + 6 chia hết cho 3 => P + 4 là hợp số (loại)
Vậy P + 8 là hợp số
Vì S(n) là tổng các chữ số của n => S(n) và n có tổng các chữ số bằng nhau.
=> n và S(n) có cùng số dư khi chia cho 3
=> n - S(n) chia hết cho 3
a) Tìm bộ ba số nguyên dương (a;b;c) sao cho \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\) =1
b)Chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50.
c) Kí hiệu S(a) là số các chữ số của số tự nhiên a. Tìm số nguyên dương n để
S(5n)- S(2n) là số chẵn.