|x-2011y|+(y-1)2012=0
nhanh dùm nha
( x - 1)^x+1 - (x - 1)^x+12=0
nhanh dùm ạ :((
\(\left(x-1\right)^{x+1}-\left(x-1\right)^{x+12}=0\\ \Leftrightarrow\left(x-1\right)^{x+1}\left[1-\left(x-1\right)^{11}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+11}=0\\\left(x-1\right)^{11}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Tìm x,y biết : a) |x-2011y| + (y-1)2012 = 0
Bạn tham khảo ở đây nhé => https://olm.vn/hoi-dap/question/607241.html
\(\left\{\begin{matrix}\left|x-2011y\right|\ge0\\\left(y-1\right)^{2012}\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011y=0\\y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-2011y=0\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011=0\Rightarrow x=2011\\y=1\end{matrix}\right.\)
Vậy................
Tìm x,y biết:|x-2011y|+(y-1)2012=0
cần lời giải gấp ạ
Giải
Để |x-2011y|+(y-1)2012=0 thì cả hai số hạng trên cùng bằng 0 hoặc hai số hạng trên trái dấu nhau nhưng |x-2011y| luôn lớn hơn hoặc bằng 0, (y-1)2012 có số mũ chẵn nên cũng lớn hơn hoặc bằng 0
=> Cả hai số trên cùng dấu nên cả hai số trên đều phải bằng 0
=> (y-1)2012 =0 và |x-2011y|=0
=> y-1=0=>y=1 và |x-2011y|=0<=> |x-2011.1|=0=>x-2011=0=>x=2011
Vậy x=2011 và y=1
Ta dễ dàng nhận thấy :
\(|x-2011y|\ge0\)
\(\left(y-1\right)^{2012}\ge0\)
Cộng lại ta có :
\(|x-2011y|+\left(y-1\right)^{2012}\ge0\)
Dấu = xảy ra \(< =>\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)
\(< =>\hept{\begin{cases}x-2011=0\\y=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=2011\\y=1\end{cases}}\)
Tìm x,y biết |x-2011y|+<y-1> mũ 2012=0
<> là ngoặc
Tìm x, y
\(|x-2006y|+|x-2012|\le0.\)
\(|x-2011y|+|y-1|=0\)
a,\(|x-2006y|+|x-2012|\le0\left(1\right)\)
Có \(|x-2006y|\ge0\forall x,y\left(2\right)\)
Có\(|x-2012|\ge0\forall x\left(3\right)\)
Từ (1) , (2) , (3)=> \(|x-2006y|+|x-2012|=\)0(4)
Từ (2),(3),(4)
<=>\(\hept{\begin{cases}x-2006y=0\\x-2012=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2006y\left(5\right)\\x=2012\left(6\right)\end{cases}}\)
thay x=2012 vào (5) ta có
2012=2006y
<=>y=\(\frac{1006}{1003}\)
Vậy x=2012;y=\(\frac{1006}{1003}\)
b,\(|x-2011y|+|y-1|=0\left(7\right)\)
Có\(|x-2011y|\ge0\forall x,y\left(8\right)\)
\(|y-1|\ge0\forall y\left(9\right)\)
Từ (6),(7),(8)
<=>\(\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2011y\left(10\right)\\y=1\left(11\right)\end{cases}}\)
thay y=1 vào (10) ta có
x=2011.1=2011
vậy x=2011;y=1
Cho x, y, z thỏa mãn : \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}\) . Chứng minh rằng \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\)
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)
\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)
\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)
\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)
Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
\(\frac{2012z-2013y}{2011}=\frac{2012\cdot2013k-2013k\cdot2012}{2011}=\frac{0}{2011}=0\)(1)
\(\frac{2013x-2011z}{2012}=\frac{2013\cdot2011k-2011\cdot2013k}{2012}=\frac{0}{2012}=0\)(2)
\(\frac{2011y-2012x}{2013}=\frac{2011\cdot2012k-2012\cdot2011k}{2013}=\frac{0}{2013}=0\)(3)
Từ (1) , (2) và (3) => đpcm
Phân tích đa tức thành nhân tử :
x4 + 2012y4 + 2011y +2012
Phân tích đa thức thành nhân tử :
x4 + 2012y2 + 2011y +2012
Tim x, y:
[x-2011y]+(y-1)^2016=0