Chứng minh rằng nếu P và P+2 là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
Chứng minh rằng nếu p và (p+2) là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
Ta có: p+(p+2)=2(p+1)
Vì p lẻ nên ( p + 1 ) ⋮ 2 = > 2 ( p + 1 ) ⋮ 4 (1)
Vì p, (p+1), (p+2) là 3 số tự nhiên liên tiếp nên có ít nhất một số chia hết cho 3, mà p và (p+2) nguyên tố nên ( p + 1 ) ⋮ 3 (2)
Từ (1) và (2) suy ra p + ( p + 2 ) ⋮ 12 (đpcm)
chứng minh rằng nếu p và p+2 là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12
p > 3
=> Đặt p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1
=> p + 2 = 3k + 3 = 3(k + 1)
=> p + 2 là hợp số (lọai)
Khi p = 3k + 2
=> p + 2 = 3k + 4 (tm)
=> p + p + 2 = 3k + 2 + 3k + 4 = 6k + 6 = 6(k + 1)
Khi k = 2t => 3k + 2 = 3.2t + 2 = 2(3t + 1)
=> 3k + 2 là họp số loại
Khi k = 2t + 1
=> 3k + 2 = 6t + 5 (tm)
3k + 4 = 6t + 7 (tm)
Khi đó p + p + 2 = 6(k + 1) = 6(2t + 1 + 1) = 6(2t + 2) = 12(t + 1) \(⋮\)12
chứng minh rằng : nếu P và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng luôn chia hết cho 12
+) Trong ba số nguyên liên tiếp, có một số chia hết cho 3. Vì \(p,p+2\) là các số nguyên tố lớn hơn 3, suy ra \(p+1\) chia hết cho 3. Vậy \(p+\left(p+2\right)=2\left(p+1\right)\vdots3.\)
+) Vì \(p,p+2\) là các số nguyên tố lẻ nên chia cho 4 chỉ có thể dư là 1 hoặc 3.
Nếu \(p=4k+1\to p+2=4k+3\to p+\left(p+2\right)=2\left(p+1\right)=4\left(2k+1\right)\vdots4.\)
Nếu \(p=4k+3\to p+2=4k+5\to p+\left(p+2\right)=2\left(p+1\right)=4\left(k+2\right)\vdots4.\)
Vậy tổng \(p+\left(p+2\right)\) vừa chia hết cho \(3\) vừa chia hết cho \(4\), nên chia hết cho \(12\).
+ Ta sẽ chứng minh bằng phản chứng
- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn
- ....
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12
Chứng minh rằng nếu p và p+2 là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hét cho 12.
chứng minh rằng nếu p và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 13
Chứng minh răng p và p+2 là hai số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
p + p + 2 = 2p +2 = 2(p +1) chia hết cho 2
p nguyên tố lớn hơn 3
< = > p chia 3 dư 1 => p + p +2 chia hết cho 3
p chia 3 dư 2 < = > p + p + 2 chia 3 dư 1
Bạn xem lại đề
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
tìm số nguyên tố p sao cho p+2 và p+94 đều là số nguyên tố
hai số 2n-1 và 2n +1 (n>2) có thể đồng thời là các số nguyên tố ko, vì sao\
chứng minh rằng nếu p và p+2 là hai số nguyên tố lớn hơn 3 thì tổm của chúng chia hết cho 12
cả 2 số ko thể là số nguyên tố được vì ta có 2^n−1,2n,2^n+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3
mà 2n không chia hết cho 3 nên trong 2 số 2^n−1,2^n+1 có 1 số chia hết cho 3 và lớn hơn 3 (do n>2)
vậy 2 số trên ko đồng thời là số nguyên tố
^ là mũ nhé