Chứng minh rằng:
a) 29 - 1 chia hết cho 73
b) 56- 104 chia hết cho 9
Chứng minh:
a) 2 9 -1 chia hết cho 73; b) 5 6 - 10 4 chia hết cho 9.
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
CMR: nếu 7a + 5b chia hết cho 29 thì 21a + 73b chia hết cho 29 và ngược lại
Ta có : 7a + 5b chia hết cho 29 => 3(7a+5b) cũng chia hết cho 19 = 21a + 15b chia hết cho 29
=> ( 21a + 73b ) - ( 21a + 15b ) = 58b
=> 58b + ( 21a + 15b ) = 21a + 73b
Mà 58b và 21a + 15b đề chia hết cho 29 nên 21a + 15 cũng chia hết cho 29
=> đpcm
Ta có : 7a + 5b chia hết cho 29 => 3(7a+5b) cũng chia hết cho 19 = 21a + 15b chia hết cho 29
=> ( 21a + 73b ) - ( 21a + 15b ) = 58b
=> 58b + ( 21a + 15b ) = 21a + 73b
Mà 58b và 21a + 15b đề chia hết cho 29 => 21a + 15 cũng chia hết cho 29(ĐPCM)
Chứng minh rằng:
a, 3.600+3120 chia hết cho 9
b, Nếu abc = 2.deg thì abcdeg chia hết cho 87
c, Nếu abcd chia hết cho 29 thì (a+3b+9c+27d) chia hết cho 29
Cho N=dcba(có gạch ngang trên đầu) chứng minh rằng nếu N chia hết cho 29 thì (a+3b+9c+27d) cũng chia hết cho 9
Cho 3a+7b chia hết cho 29. Chứng minh rằng:
a) 32a+7b chia hết cho 29
b) 3a+36b chia hết cho 29
c) 35a+43b chia het cho 29
d) a+2b chia hết cho 29
A)...32a+7b=29a+3a+7b
29a tất nhiên chia hết cho 29: 3a+7b chia hết ho 29=>đpcm
b)3a+7b+29b lập luân (a)=>đpcm
c)2(3a+7b)+29a+29 a=>đpvm
d)
Chứng minh rằng nếu abcd chia hết cho 29 thì a+3b+9c+27d chia hết cho 29
\(\overline{abcd}=1000a+100b+10c+d=\)
\(=\left(986a+87b\right)+\left(14a+13b+10c+d\right)=\)
\(=\left(34.29.a+3.29.b\right)+\left(14a+13b+10c+d\right)=\)
\(=29\left(34a+3b\right)+\left(14a+13b+10c+d\right)⋮29\)
Mà \(29\left(34a+3b\right)⋮29\Rightarrow14a+3b+10c+d⋮29\)
\(\Rightarrow2\left(14a+13b+10c+d\right)=28a+26b+20c+2d⋮29\)
\(\Rightarrow28a+26b+20c+2d-29\left(a+b+c+d\right)=\)
\(=-3a-3b-9c-27d=-\left(a+30+9c+27d\right)⋮29\)
\(\Rightarrow a+3b+9c+27d⋮29\)
1.Tìm x biết: (x-2)(x2+2x+7)+2(x2-4)-5(x-2)=0
2. CMR:
a. 29-1 chia hết 73
b. 56-104 chia hết 9
c. (n+3)2-(n-1)2 chia hết cho 8 với mọi n thuộc Z
1.=(x-2)(x 2+2x+7)+2(x-2)(x+2)-5(x-2) = 0
=>(x-2)(x 2+2x+7+2x+4-5) = 0
=>(x-2)(x 2+4x+6) = 0
Mà x 2+4x+6 (E Z)
=> x 2+4x+6 > 0
Vậy (x-2)=0 => x = 2
7)Chứng minh rằng :
a) abcabc chia hết cho 7,11,13
b) abcdeg chia hết cho 23 và 29 , biết rằng abc=2.deg
8)Chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13