/x-y/+/y+\(\frac{9}{25}\) =0
|x-y|+|y+\(\frac{9}{25}\)|=0
Ta có / x-y / + / y + \(\frac{9}{25}\)/ =0
=> \(\hept{\begin{cases}x-y=0\\y+\frac{9}{15}=0\end{cases}}\)
=>\(\hept{\begin{cases}x-y=0\\y=-\frac{9}{15}\end{cases}}\)
Với y = \(\frac{-9}{15}\) Ta có x là số đối của y
=> x = \(\frac{9}{15}\)
|x-y|+|y+\(\frac{9}{25}\)|=0
\(|x-y|+|y+\frac{9}{25}|=0\)
Tìm x
tìm x , y\(\left|\frac{1}{2}-\frac{1}{3}+x\right|=-\frac{1}{4}-\left|y\right|\)
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
1,tìm x,y:
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=-\frac{9}{25}\end{cases}}}\)
=> x= y = -9/25
Cho \(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\) và \(\frac{9-x}{7}+\frac{11-x}{9}=2\).Tính x+y+z?
Từ \(\frac{9-x}{7}+\frac{11-x}{9}=2\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-2=0\)
\(=>\frac{9-x}{7}+\frac{11-x}{9}-1-1=0\)
\(=>\left(\frac{9-x}{7}-1\right)+\left(\frac{11-x}{9}-1\right)=0\)
\(=>\frac{2-x}{7}+\frac{2-x}{9}=0=>\left(2-x\right).\left(\frac{1}{7}+\frac{1}{9}\right)=0\)
Vì \(\frac{1}{7}+\frac{1}{9}\) khác 0=>2-x=0=>x=2
Theo T/c dãy tỉ số=nhau:
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25+z+9}{9+16+25}\)\(=\frac{\left(x+y+z\right)+\left(16-25+9\right)}{9+16+25}=\frac{x+y+z}{50}\)
Thay x=2 vào \(\frac{x+16}{9}=>\frac{2+16}{9}=\frac{x+y+z}{50}=>\frac{x+y+z}{50}=2=>x+y+z=100\)
Vậy x+y+z=100
Cho \(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\)và \(\frac{9-x}{7}+\frac{11-x}{9}=2\),Tính x + y + z
Ta có : \(\frac{9-x}{7}=\frac{11-x}{9}=1+\frac{2-x}{7}+1+\frac{2-x}{9}=2=>\left(2-x\right)\left(\frac{1}{7}+\frac{1}{9}\right)=0=>2-x=0=>x=2\)
Thế vào tìm đc y và z rồi ra x+y+z nha bạn
\(|x+\frac{25}{47}|+|y-\frac{9}{17}|=0\text{ }\)
HELPPPPPPPPPPPPPPPP!
Vì \(\left|x+\frac{25}{47}\right|\ge0\forall x\inℝ\); \(\left|y-\frac{9}{17}\right|\ge0\forall y\inℝ\)
\(\Rightarrow\left|x+\frac{25}{47}\right|+\left|y-\frac{9}{17}\right|\ge0\forall x;y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+\frac{25}{47}=0\\y-\frac{9}{17}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-25}{47}\\y=\frac{9}{17}\end{cases}}\)
1 tìm x,y biết
a, /x-y/+/y+\(\frac{9}{25}\)/ =0
/ / là trị tiệt đối
Đặt \(A=\left|x-y\right|+\left|y+\frac{9}{25}\right|\)
\(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|y+\frac{9}{25}\right|\ge0\forall x;y\end{cases}\Rightarrow A=\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x;y}\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y=-\frac{9}{25}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\y=-\frac{9}{25}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{9}{25}\\y=-\frac{9}{25}\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=-\frac{9}{25}\\y=-\frac{9}{25}\end{cases}}\)
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-y\right|=0\forall x;y\\\left|y+\frac{9}{25}\right|=0\forall y\end{cases}\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x;y}\)
Mà \(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|y+\frac{9}{25}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\y=-\frac{9}{25}\end{cases}\Rightarrow}x=y=-\frac{9}{25}}\)
Vậy \(x=y=-\frac{9}{25}\)