Phân tích đa thức thành nhân tử : x^4 - 2x^3 + 10x^2 + 9x + 14
Mọi người giúp mình với ạ mình cảm ơn rất nhiều <3 <3 <3
Để phân tích đa thức thành nhân tử, ta có thể sử dụng phương pháp phân tích hệ số hoặc sử dụng định lý nhân tử của đa thức. Trong trường hợp này, chúng ta sẽ sử dụng phương pháp phân tích hệ số.
Đa thức: x^4 - 2x^3 + 10x^2 + 9x + 14
Đầu tiên, chúng ta sẽ tìm các ước của hệ số tự do (14). Các ước của 14 là ±1, ±2, ±7 và ±14. Tiếp theo, chúng ta sẽ thử từng ước này vào đa thức để kiểm tra xem có tồn tại nhân tử nào cho đa thức hay không.
Thử với ước 1: 1^4 - 2(1)^3 + 10(1)^2 + 9(1) + 14 = 32
Thử với ước -1: (-1)^4 - 2(-1)^3 + 10(-1)^2 + 9(-1) + 14 = 16
Thử với ước 2: 2^4 - 2(2)^3 + 10(2)^2 + 9(2) + 14 = 58
Thử với ước -2: (-2)^4 - 2(-2)^3 + 10(-2)^2 + 9(-2) + 14 = 10
Thử với ước 7: 7^4 - 2(7)^3 + 10(7)^2 + 9(7) + 14 = 2064
Thử với ước -7: (-7)^4 - 2(-7)^3 + 10(-7)^2 + 9(-7) + 14 = 1288
Thử với ước 14: 14^4 - 2(14)^3 + 10(14)^2 + 9(14) + 14 = 25088
Thử với ước -14: (-14)^4 - 2(-14)^3 + 10(-14)^2 + 9(-14) + 14 = 20096
Dựa vào kết quả trên, ta thấy rằng không có ước nào cho đa thức. Do đó, ta kết luận rằng đa thức x^4 - 2x^3 + 10x^2 + 9x + 14 không thể phân tích thành nhân tử trong trường số thực.
Cho đa thức: P(x) = x^5 - 2x^3 + 3x^4 - 9x^2 + 11x - 3 và Q(x) = 3x^4 = x^5 - 2x^3 - 11 - 10x^2 + 9x
Biết rằng G(x) = 2x^2 + Q(x) = P(x). Tìm đa thức G(x).
- Các bạn giải giúp mình với nhé!
Lấy P(x) - Q(x) -2x^2 thì ra G(x) nhé
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
Câu 1 : Tìm nghiệm của đa thức f(x)= x^2+2x-3
Câu 2 : Chứng minh đa thức q(x)=x^2-10x+29 không có nghiệm !
Giúp mk với !
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
3 k nha bạn tốt quá mình đag cần gấp :)
giúp mình bài này với
H(x) = 4x mũ 4 + 9x mũ 2 + 2
chứng tỏ đa thức H(x) không có nghiệm
H ( x)= 4x4 + 9x2 + 2
Ta có : 4x4 \(\ge\)0
9x2 \(\ge\)0
2 > 0
\(\Rightarrow\)4x4 + 9x2 + 2 > 0
\(\Rightarrow\) H ( x) > 0
Vậy đa thức H ( x) không có nghiệm
Hok tốt ^^
Ta có :4^4+9^2 >0
4^4+9^2+2> hoặc = 2
\(\Rightarrow4x^4+9x^2+2>0\)
\(\RightarrowđathứcH\left(x\right)khongcónghiệm\)
Cho hai đa thức P(x)=x^5-2x^3+3x^4-9x^2+11x-6 và Q(x)=3x^4+x^5-2(x^3+4)-10x^2+9x. Đặt H(x)=P(x)-Q(x) 1. Chứng minh rằng H(x) không có nghiệm 2. Chứng tỏ rằng H(x) khác 2008 với mọi x thuộc Z
Cho hai đa thức P(x)=x^5-2x^3+3x^4-9x^2+11x-6 và Q(x)=3x^4+x^5-2(x^3+4)-10x^2+9x. Đặt H(x)=P(x)-Q(x)
1. Chứng minh rằng H(x) không có nghiệm
2. Chứng tỏ rằng H(x) khác 2008 với mọi x thuộc Z
a. c(x)=x5−2x3+3x4−9x2+11x−6−(3x4+x5−2x3−8−10x2+9x)
c(x)=x2+2x+2
b. Để c(x)=2x+2 thì x2=0⇒x=0
c. Với c(x)=2012, ta có:
c(x)=x2+2x+2=(x+1)2+1=2012
⇔(x+1)2=2011⇒x+1∉Z⇒x∉Z
làm giúp mình với
phân tích các đa thức sau thành nhân tử bằng phương pháp hệ số nhất định
2x^2 - 7xy + 6y^2 + 9x - 13y - 5
2x^4 - 7x^3 + 17x^2 - 20x + 14
2x^4 - 19x^3 + 2002x^2 - 9779x + 11670
tìm nghiệm của các đa thức sau:
-6x3+x2+5x-2
3x3+19x2+4x-12
2x3-11x2+10x+8
=> -6x3 - 6x2 + 7x2 + 7x - 2x - 2 = 0
=> -6x2(x+1) + 7x(x+1) - 2(x+1) = 0
=> (x+1)(-6x2+7x-2) = 0
=> (x+1)(x2-\(\frac{7}{6}x+\frac{1}{3}\)) = 0
\(\Rightarrow\left(x+1\right)\left(x-\frac{1}{2}\right)\left(x-\frac{2}{3}\right)=0\)
=> x = -1 hoặc x = 1/2 hoặc x = 2/3
3x3 + 19x2 + 4x - 12 = 0=> 3x3 + 3x2 + 16x2 + 16x - 12x - 12 = 0
=> (x+1)(3x2+16x-12)=0
=> (x+1)\(\left(x^2+\frac{16}{3}x-4\right)=0\)
=> (x+1) \(\left(x-\frac{2}{3}\right)\left(x+6\right)=0\)
=> x = -1 hoặcx = 2/3 hoặc x = -6
2x3 - 11x2 + 10x + 8 = 0=> 2x3 - 4x2 - 7x2 + 14x - 4x + 8 = 0
=> 2x2(x - 2) - 7x(x - 2) - 4(x - 2) = 0
=> (x - 2)(2x2 - 7x - 4)=0
=> (x - 2)(\(x^2-\frac{7}{2}x-2\)) = 0
=> \(\left(x-2\right)\left(x-4\right)\left(x+\frac{1}{2}\right)=0\)
=> x = 2 hoặc x = 4 hoặc x = -1/2