Tim x: \(\left(x=8\right)^3\)+ 30 = -2
\(\left|x\right|-5\frac{3}{7}\left|x\right|-\frac{3}{4}=2\left|x\right|+\left(-\frac{8}{7}\right)\)
Tim x
khi x>0, ta có
x - 38/7*x - 3/4 = 2*x + (-8/7)
-45/7*x=-11/28
x=-11/180( ko thoả )
khi x<0 có
-x -38/7x - 3/4 = -2x -8/7
bạn tự giải nhé rồi ktra dđiều kiện nhé !
Tim x:
1.\(\left(2x+1\right)\left(x-1\right)-x\left(2x-3\right)+3=0\)
2.\(\left(x^2+x-2\right)\left(x^2-x-2\right)-x^2\left(x^2-2\right)+8=0\)
\(1,\left(2x+1\right)\left(x-1\right)-x\left(2x-3\right)+3=0\)
\(\Rightarrow2x^2-2x+x-1-\left(2x^2-3x\right)+3=0\)
\(\Rightarrow2x^2-2x+x-1-2x^2+3x+3=0\)
\(\Rightarrow2x=-2\Rightarrow x=-1\)
\(2,\left(x^2+x-2\right)\left(x^2-x-2\right)-x^2\left(x^2-2\right)+8=0\)
\(\Rightarrow[\left(x^2\right)^2-\left(x-2\right)^2]-x^2\left(x^2-2\right)+8=0\)
\(\Rightarrow x^4-\left(x^2-4x+4\right)-x^4+2x^2+8=0\)
\(\Rightarrow x^4-x^2+4x-4-x^4+2x^2+8=0\)
\(\Rightarrow x^2+4x+4=0\)
\(\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
Tim x : \(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
Tim Max :
E = \(\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
F = \(\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)
\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)
\(MIN_{\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)
\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)
\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)
\(MIN_{3\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)
\(\)
tim x\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x-1\right)=11\)
tim x
\(a,\left(x-1\right)^2=\left|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}\right|\)
b , \(\left(x^x-8\right).\left(x^2-15\right)< 0\)
A) (x—1)2= | 1/4–1/2–3/4 |
(x—1)2= | 1/4–2/4–3/4 |
(x—1)2=|—1|
(x—1)2=1
==> (x—1)=1 hoặc (x—1)=-1
x=1+1 hoặc x—1=-1+1
x=2 hoặc x=0
b)(xx—8).(x2–15)<0
==> xx—8 <0 và x2> 0
Hay xx—8 >0 và x2<0
Mình chỉ biết tới đó thôi
\(a,\left(x-1\right)^2=\left|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}\right|\)
\(\Rightarrow\left(x-1\right)^2=\left|-1\right|\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
vậy__
b, k bt
tim x
\(-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
a) \(-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)
\(\Rightarrow[-4x^2-\left(-4x\right).5]-[2x.8-\left(2x\right)^2]=-3\)
\(\Rightarrow[-4x^2-\left(-20x\right)]-\left(16x-4x^2\right)=-3\)
\(\Rightarrow\left(-4x^2\right)+20x-16x+4x^2=-3\)
\(\Rightarrow[\left(-4x^2\right)+4x^2]+\left(20x-16x\right)=-3\)
\(\Rightarrow4x=-3\)
\(\Rightarrow x=\frac{-3}{4}\)
b) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
\(\Rightarrow2^x+2^x.2+2^x.2^2+2^x.2^3=120\)
\(\Rightarrow2^x\left(1+2+4+8\right)=120\)
\(\Rightarrow2^x.15=120\)
\(\Rightarrow2^x=120:15=8=2^3\)
\(\Rightarrow x=3\)
tim x
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Nhân hết ra,giải phương trình bậc cao đi