Tìm các số nguyên n thoả mãn n + 3 chia hết cho 2n - 1
tìm số nguyên n thoả mãn 3n +1 chia hết cho 2n-2
\(3n+1⋮2n-2\)
=> \(2x\left(3n+1\right)⋮2n-2\)
=>\(6n+2⋮2n-2\)
=>\(3\left(2n-2\right)+6+2⋮2n-2\)
Vì VT chia hết cho VP
mà 3(2n-2) luôn chia hết cho 2n-2
Từ hai điều trên => 8 chia hết cho 2n-2
=> \(2n-2\inƯ\left(8\right)\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Ta có bảng sau
2n-2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -3 | -1 | 0 | loại | loại | 2 | 3 | 5 |
KL: \(x\in\left\{-3;-1;0;1;3;5\right\}\)
cảm ơn bn
a)Tìm cặp số nguyên(x,y) thoả mãn x mũ 2y-2x=5
b)Tìm số nguyên n biết (2n-3)chia hết (n+1)
Tìm tất cả các số nguyên x thỏa mãn:
a)2n+1 chia hết cho 3-n
b)n+3 chia hết cho 2n-1
các bn giúp mình giải 1 số bài tập này nhé :
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho n-2
-tìm số tự nhiên n thỏa mãn :n+3 chia hết cho 2n -2
-tìm các số nguyên x thỏa mãn x lớn hơn hoặc bằng -21/7 và x bé hơn hoặc bằng 3
-tìm các số tự nhiên x,y thỏa mãn x-1 chia hết cho y , y-1 chia hết cho x
Tìm tất cả các số tự nhiên n thoả mãn:
a) 2n+1 chia hết cho n
b) n+3 chia hết cho n+1.
a)\(\begin{cases} 2n+1⋮n\\ n⋮n=>2n⋮n \end{cases}\)=> (2n+1)-2n⋮n
<=> 1⋮n
=> n∈Ư(1) => n={1;-1}
b)\(\begin{cases} n+3⋮n+1\\ n+1⋮n+1 \end{cases}\)=> (n+3)-(n+1)⋮ n+1
<=> 2⋮ n+1
=> n+1∈Ư(2)
=> n+1={2;-2;1;-1}
=> n={1;-3;0;-2}
Tìm các số nguyên n thỏa mãn : 2n + 8 chia hết cho n +3
2n + 8 chia hết cho n +3
=> (2n+6) - 6 + 8 chia hết cho n + 3
=> (2n+2.3) + 2 chia hết cho n + 3
=> 2(n+3) + 2 chia hết cho n+3
mà 2(n+3) chia hết cho n+3
=> 2 chia hết cho n+3
=> n+3 thuộc Ư(2)
n thuộc Z => x+3 thuộc Z
=> n+3 thuộc {-1;-2;1;2}
=> n thuộc {-4;-5;-2;-1}
vậy_____
Bài 1: tìm các số nguyên x hoặc y thoả mãn
A) (2x-y) ( x+2) =12
B) xy= 2x+2y
Bài 2: tìm số tự nhiên n sao cho:
A) n+3 chia hết cho n
B) n+4 chia hết cho n+1
Bài 4:
a) Tìm số nguyên thỏa mãn -2n+1 chia hết cho n-2
b) tìm số nguyên n thỏa mãn (n-2) chia hết cho (3n+1)
không ạ mình hỏi các bạn bài này ạ!
1 Tìm tất cả các số nguyên dương m,n thoả mãn \(9^m-3^m=n^4+2n^3+n^2+2n\)
2 Cho hai số nguyên dương x,y thoả mãn \(\left(x+y\right)^2+3x+y+1\) là số chính phương. CMR x=y.