Tính \(\left(\frac{1}{2}\right)^{15}.\left(\frac{1}{4}\right)^{20}\)
Tính:
A=\(\left(1-\frac{2}{3}+\frac{4}{3}\right)-\left(\frac{4}{5}-1\right)+\left(\frac{7}{5}+2\right)\)
B=\(\left(-3+\frac{3}{4}-\frac{1}{3}\right):\left(5+\frac{2}{5}-\frac{2}{3}\right)\)
C=\(\left(\frac{3}{5}-\frac{4}{15}\right).\left(\frac{2}{7}-\frac{3}{14}\right)-\left(\frac{5}{9}-\frac{7}{27}\right)\)\(.\left(1-\frac{3}{5}\right)+\left(1-\frac{11}{12}\right).\left(1+\frac{11}{12}\right)\)
D=\(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{-5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{4}{3}}\)
tính hợp lý:
a) \(\left(\frac{9}{10}-\frac{15}{16}\right)\left(\frac{5}{12}-\frac{11}{15}-\frac{7}{20}\right)\)
b) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3-1}\right)\left(\frac{1}{4}-1\right).......\left(\frac{1}{100}-1\right)\)
b)\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-99}{100}=\frac{-1.\left(-2\right).\left(-3\right)...\left(-99\right)}{2.3.4...100}=-\frac{1}{100}\)
thực hiên các phép tính tính :
a) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)
b) \(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
a ) thực hiện phép tính bằng cách nhanh nhất
\(\left(-\frac{40}{51}.0,32.\frac{17}{20}\right):\frac{64}{75}\)
\(-1\frac{5}{7}.15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)
1, tim x bết:
,\(\frac{\left(-5^4\right).\left(-15^2\right)-5^4.\left(-3^2.5\right)}{\left(-3^4\right).25^2-\left(-15^2\right).225.5}\)\(:\)\(\frac{x}{5}\)\(=\frac{-1}{6}\)
2, cho A=\(\frac{20}{30}+\frac{20}{70}+\frac{20}{126}+...+\frac{20}{798}\)
B=\(\left(\frac{41}{2}.\frac{42}{2}.\frac{43}{2}...\frac{80}{2}\right):\left(1.3.5...79\right)\)
So sánh A và B.
3, Tính nhanh.
\(\frac{0,875+\frac{1}{2}-7\%-\frac{1}{58}}{\frac{1}{25}-\frac{1}{2}-\frac{2}{7}+\frac{2}{203}}\)\(-125\%\)
HELP ME PLEASE......
Tính:
\(\left(\frac{\left(6-4\frac{1}{2}\right):0,03}{\left(3\frac{1}{20}-2,65\right).4+\frac{2}{5}}-\frac{\left(0,3-\frac{3}{20}\right).1\frac{1}{2}}{\left(1,88+2\frac{3}{25}\right).\frac{1}{80}}\right):\frac{49}{60}\)
Tính:\(\left(2018-\frac{1}{3}-\frac{2}{4}-\frac{3}{5}-...-\frac{2018}{2020}\right):\left(\frac{1}{15}+\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}\right)\)
nhanh nha mấy bạn mình đang cần rất gấp
Tính A=\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)
Tính
\(S=\frac{\left(1^4+\frac{1}{4}\right).\left(3^4+\frac{1}{4}\right).\left(5^4+\frac{1}{4}\right).....\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right).\left(6^4+\frac{1}{4}\right)....\left(20^4+\frac{1}{4}\right)}\)
Ta có: \(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2a+2\right)\left(a^2-2a+2\right)\) (*)
Nhân 24 vào mỗi tổng ở tử thức và mẫu thức ta có : \(S=\frac{\left(2^4+4\right)\left(6^4+4\right)...\left(38^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)...\left(40^4+4\right)}\)
Áp dụng (*) vào S ta được:
\(S=\frac{\left(2^2+2.2+2\right)\left(2^2-2.2+2\right)\left(6^2+2.6+2\right)\left(6^2-2.6+2\right)...\left(38^2+2.38+2\right)\left(38^2-2.38+2\right)}{\left(4^2+2.4+2\right)\left(4^2-2.4+2\right)\left(8^2+2.8+2\right)\left(8^2-2.8+2\right)...\left(40^2+2.40+2\right)\left(40^2-2.40+2\right)}\)
\(=\frac{2.10.26.50...1370.1522}{10.26.50.82...1522.1682}=\frac{2}{1682}=\frac{1}{841}\)
Vậy \(S=\frac{1}{841}\)