chứng minh 2500+2400+1523 không chia hết cho 5
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a,
n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2
TH1: n2 : 3 <=> (3k+1)2 : 3 = (9k2+6k+1) : 3 => dư 1
TH2: n2 : 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1
các phần sau làm tương tự.
cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20
Chứng minh chia hết cho 5 không cần chia trường hợp có được không? Giúp mk vs
Cho n thuộc N , chứng minh rằng 5n - 1 chia hết cho 4
Cho n thuộc N , chứng minh rằng n2 + n + 1 không chia hết cho 4 và không chia hết cho 5
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a) a lẻ suy ra a+5 chia hết cho 2
a chẵn suy ra a+8 chia hết cho 2
Chứng minh 555.....5 (2n cs 5) chia hết cho 11 nhưng không chia hết cho 125
Ta có: 125=25.5 => 555..5 phải phân tích ta thành tích 2 số 1 số chia 5 cho 5, số còn là chia hết cho 25. Ta có 5555...5= 111...1. Mà 111...1 có tận cùng là 11 k chia hết cho 25 => 555...5 k chia hết cho 25. Ta có tổng các chữ số hàng lẻ trừ tổng các chữ số hằng chẵn chia hết cho 11 thì số đó chia hết cho 11 mà 555...555 có 2n chữ số => số chữ số hàng lẻ = số chữ số hàng chẵn => hiệu =0 chia hết cho 11( đpcm)
cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20
Chứng minh chia hết cho 5 không cần chia trường hợp có được không? Giúp mk vs
Lời giải:
$A=p^4+2019q^4=p^4-q^4+2020q^4$
$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $(p,5)=(q,5)=1$
$\Rightarrow p^2,q^2\equiv 1,4\pmod 5$
Nếu $p^2\equiv q^2\pmod 5$ thì $p^2-q^2\equiv 0\pmod 5$
$\Rightarrow A=(p^2-q^2)+2020q^4\equiv 0 \pmod 5(1)$
Nếu $p^2,q^2$ không cùng số dư khi chia cho $5$ thì:
$p^2+q^2\equiv 1+4\equiv 0\pmod 5$
$\Rightarrow A\equiv 0\pmod 5(2)$
Từ $(1);(2)\Rightarrow A\vdots 5(*)$
Mặt khác:
Vì $p,q>5$ nên $p,q$ lẻ
$\Rightarrow p^2\equiv q^2\equiv 1\pmod 4$
$\Rightarrow p^2-q^2\equiv 0\pmod 4$
$\Rightarrow A=(p^2-q^2)(p^2+q^2)+2020q^4\equiv 0\pmod 4$
$\Rightarrow A\vdots 4(**)$
Từ $(*); (**)\Rightarrow A\vdots (4.5=20)$
Akai Haruma!(mod 5) và (mod 4) là j vậy
Cho n thuộc N. Chứng minh n^2 + n + 1 không chia hết cho 4 và không chia hết cho 5
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
1)Chứng minh rằng Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5 còn tổng 6 số liên tiếp không chia hết cho 6
2)Cho (16.a+17.b)chia hết cho11 Chứng minh rằng (17.a+16.b)chia hết cho11
cho B = 5 + 5^2 +5^3+...+5^2012 +5^2013
a/ chứng minh B chia hết cho 31
b/chứng minh B không chia hết cho 156
c/ tìm số dư khi B chia cho 156
a/ghép 3 cái lại với nhau
5+5^2+5^3=5(1+5+25)=5.31
các phần khác làm tương tự
cứ k đi có gì hỏi sau
\(B=5+5^2+5^3+...+5^{2012}+5^{2013}\)
\(=\left(5+5^2+5^3\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(=5\left(1+5+5^2\right)+...+5^{2011}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{2011}.31\)
\(=31\left(5+5^4+...+5^{2011}\right)⋮31\left(đpcm\right)\)
a)B=5+52+53+...+52013
vì 2013 chia hết cho 2013 nên:
B=(5+52+53)+...+(52011+52012+52013)
B=5.(1+5+52)+...+52011.(1+5+52)
B=5.31+...+52011.31
B=31.(5+...+52011)CHIA HẾT CHO31(VÌ 31CHIA HẾT CHO 31)
Vậy B chia hết cho 31