Chứng minh rằng các số có dạng : A(n)= (3n)4n+1 + 2 với n thuộc N* không phải là số nguyên tố
1. chứng tỏ rằng
a . Mọi số nguyên tố lớn hơn 2 đều viết dưới dạng 4n+ 1 hoặc 4n-1( n thuộc n*)
b. Có phải mọi số tự nhiên có dạng 4n+1 hoặc 4n-1 ( n thuộc N*) đều là số nguyên tố hay không
VD: 25=4.6+1=52
15=4.4-1=3.5
Bạn chỉ cần lấy ví dụ đơn giản cho bài như thế là được
kho nhi . ba con co bacoi cho con xin ot cai ****
Chứng minh các số nguyên dạng A(n)=3^2^4n+1 +2 với n là số tự nhiên dều không phải là số nguyên tố
1.chứng tỏ rằng : có phải mọi số tự nhiên có dạng 4n+1 hoặc 4n-1 ( n thuộc N*) đều là số nguyên tố hay không
Chứng tỏ rằng: có phải mọi số tự nhiên có dạng 4n+1 hoặc 4n-1(n thuộc N*) đều là số nguyên tố hay không?
Chứng tỏ rằng : Có phải mọi só tự nhiên đều có dạng 4n+1 hoặc 4n-1 ( n thuộc N*) đều là số nguyên tố hay không
BT 1 : Chứng tỏ rằng :
a . Mọi số nguyên tố lớn hơn 2 đều viết dưới dạng 4n+1 hoặc 4n - 1 ( n thuộc N* )
b . Có phải mọi số tự nhiên có dạng 4n +1 hoặc 4n - 1 ( n thuộc N* )
BT2 . các số sau là là nguyen tố hay hợp số . giải thích
A = 123456789+729
B = 5.7.8.9.11 + 132
Chứng minh rằng : 3n+1 và 4n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Gọi ƯCNL(3n+1 ; 4n+1) = d
Ta có : 3n + 1 chia hết cho d => 4(3n + 1) chia hết cho d
4n + 1 chia hết cho d => 3(4n + 1) chia hết cho d
=> 4(3n + 1) - 3(4n + 1) chia hết cho d
=> (12n + 4) - (12n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN(3n+1;4n+1)
3n+1 chia hết cho d 4(3n+1) chia hết cho d 12n+4 chia hết cho d(1)
=>{ =>{ =>
4n+1 chia hết cho d 3(4n+1) chia hết cho d 12n+3 chia hết cho d(2)
Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d
=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau
Đặt ƯCLN(3n + 1;4n + 1) = d
Ta có:3n + 1 chia hết cho d
4n + 1 chia hết cho d
=> 4(3n + 1 - 3(4n + 1) chia hết cho d
12n + 4 - 12n - 3 chia hết cho d
1 chia hết cho d => d \(\in\)Ư(1) = 1
Vậy: ƯCLN(3n + 1;4n + 1) = 1 hay 3n + 1 và 4n + 1 là 2 nguyên tố cùng nhau (đpcm)
chứng minh rằng 3n + 1 và 4n + 1 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(3n + 1; 4n + 1) Nên ta có :
3n + 1 ⋮ d và 4n + 1 ⋮ d
=> 4(3n + 1) ⋮ d và 3(4n + 1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> (12n + 4) - (12n + 3) ⋮ d
=> 1 ⋮ d => d = ± 1
Vì ƯCLN(3n + 1; 4n + 1) = 1 nên 3n + 1 và 4n + 1 là nguyên tố cùng nhau ( đpcm )
Gọi \(d=\left(3n+1,4n+1\right)=>\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}}\)
\(=>\left(4n-1\right)-\left(3n-1\right)⋮d\)
\(=>4\left(3n-1\right)-3\left(4n-1\right)⋮d\)
\(=>\left(12n-4\right)-\left(12n-3⋮d\right)\)
\(=>1⋮d\)(đpcm)
1. chứng tỏ ràng
a mọi số nguyên tố lớn hơn 2 đều viết dưới dang 4n+1 hoặc 4n-1(n thuộc N*)
b có phải mọi số tự nhiên có dang 4n +1 hoặc 4n -1 (n thuộc N* ) đều là số nguyên tố hay không
2. các số sau là số nguyên tố hay hợp số
A= 123456789 +729
B= 5.7.9.11+ 132