Cho 2 số hữu tỉ a/b và c/d ( b,d > 0). CMR a/b < c/d nêu a.d < c.b và ngược lại
Bài 1: Cho 2 số hửu tỉ a/b và c/d với b>0 và d > 0
CMR nếu a/b < c/d hì a.d < c.b
\(\frac{a}{b}< \frac{c}{d}\)(với b>0 ; d >0 )
\(\Leftrightarrow\frac{ad}{bd}< \frac{cb}{bd}\)
\(\Leftrightarrow\frac{ad}{bd}.bd< \frac{cb}{bd}.bd\)
\(\Leftrightarrow ad< cb\left(đpcm\right)\)
Cho 2 số hữu tỉ a/b và c/d (b>0,d>0).cmr a/b<c/d nếu ad<bc và ngược lại
\(\frac{a}{b}< \frac{c}{d}\left(1\right)\).Nhân 2 vế của (1) với bd ta có:
\(\frac{a}{b}\cdot bd=ad< \frac{c}{d}\cdot bd=bc\) (Đpcm)
\(ad< bc\left(2\right)\).Chia 2 vế của (2) cho bd ta có:
\(\frac{ad}{bd}=\frac{a}{b}< \frac{bc}{bd}=\frac{c}{d}\)(Đpcm)
Cho 2 số hữu tỉ a/b và c/d ( b>0,c>0 ) chứng tỏ rằng a/b <c/d khi và chỉ khi a .d < c.b
cho hai số hữu tỉ a/b vsf c/d ( b>0,d>0) . CMR
a) Nếu a/b<c/d thì a.d <b.c b) Nếu a.d<b.c thì a/b < c/d
cho 2 số hữu tỉ a/b và c/d (b,d > 0) . Chứng minh rằng nếu a/b < c/d thì a.d<b.c
Để a/b , a+c/b+d thi a(b+d)< b (a+c)<=> ab+ad < ab +bc <=>ab < bc <=> a/b < c/d
Để a+c/b+d < c/d thì (a+c).đ < (b+d).c <=> ab+cd < bc + cd <=> ad < bc <=> a/b < c/d
Cho 2 số hữu tỉ a/b và c/d (với b>0, d>0)
Chứng minh rằng: nếu a/b < c/d thì a.d < b.c
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có:
a.d<b.c
Chúc bạn học tốt!!!! ^-^
cho 2 số hữu tỉ a/b và c/d (b,d > 0) . Chứng minh rằng nếu a/b < c/d thì a.d<b.c và ngược lại
Câu hỏi tương tự Đọc thêm Báo cáo
Toán lớp 7 Bất đẳng thức
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)
Mẫu chung bd > 0 do b,d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3
cho 2 số hữu tỉ a/b và b/c ( b, d > 0 )
chứng tỏ rằng: nếu a.d < b.c thì a/b < c/d