E=\(\frac{X^2}{X-1}\)
Tìm x thuộc Z để E thuộc Z
TÌm x thuộc Z để E=\(\frac{x}{\sqrt{x}-1}\)thuộc Z
Đặt t=\(\sqrt{x}\), t guyên dương khác 1. ta có E =\(\frac{t^2}{t-1}=t+1+\frac{1}{t-1}\)
E nguyên khi t-1 là ước của 1, suy ra t-1=1 hoặc t-1=-1 tương đương t=2 hoăc t=0.
suy ra x= 4 hoặc x=0.
Cho E = ( \(\frac{1}{x+2}+\frac{1}{x-2}\)) \(.\)\(\frac{x-2}{x}\)\
a, Rút gọn E
b, Tính E khi x = 6
c, Tìm x để E = 4
d,Tìm x để E > 0
e, Tìm x thuộc Z để E thuộc Z.
Giup mik nha mn,mik tick cho ai đúng và nhanh nhất nhé .
a) \(E=\left(\frac{1}{x+2}+\frac{1}{x-2}\right).\frac{x-2}{x}\left(ĐKXĐ:x\ne0;x\ne\pm2\right)\)
\(=\left(\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{x}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}.\frac{x-2}{x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)
b) Khi x = 6 \(\Rightarrow E=\frac{2}{x+2}=\frac{2}{6+2}=\frac{2}{8}=\frac{1}{4}\)
c) \(E=4\Leftrightarrow\frac{2}{x+2}=4\Leftrightarrow4\left(x+2\right)=2\Leftrightarrow4x+8=2\Leftrightarrow x=\frac{-3}{2}\)
Vậy để E = 4 thì x = -3/2
d) \(E>0\Leftrightarrow\frac{2}{x+2}>0\Leftrightarrow2>0\)
Vậy phương trình vô nghiệm
e) \(E\in Z\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Nếu x + 2 = 1 thì x = -1
Nếu x + 2 = -1 thì x = -3
Nếu x + 2 = 2 thì x = 0
Nếu x + 2 = -2 thì x = -4
Vậy ...
Nek bạn giải thích hộ mik tí nữa nhé :Tại sao 2 > 0 thì phương trình lại vô nghiệm ?
Cho biểu thức E = \(\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\) ( với x lớn hơn hoặc bằng 0, x khác 1 )
a) Rút gọn E
b) Tìm giá trị của x để E > 1
c) Tìm giá trị nhỏ nhất của E với x >1
d) Tìm x thuộc Z để E thuộc Z
e) Tìm x để E = \(\frac{9}{2}\)
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\) vì tử của phân số luôn \(\ge0\forall x\ge0\)
\(\Rightarrow x>1\)
kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)
vậy \(x>1\) thì \(E>1\)
Cho E= \(\frac{5-x}{x-2}\)>Tìm x thuộc Z để
a, E thuộc Z
b,E có giá trị nhỏ nhất
E = 5-x/x-2 nguyên khi
5 - x ⋮ x - 2
=> x - 2 + 7 ⋮ x - 2
=> 7 ⋮ x - 2
=> x - 2 thuộc Ư(7)
bn Đồng Hiên làm câu a, tớ làm câu b :)
\(E=\frac{5-x}{x-2}=\frac{-x+2+3}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
Để E min => \(\frac{3}{x-2}_{min}\Rightarrow\left(x-2\right)_{max}\text{ và }x-2>0\)( vì 3>0 và ko đổi )
=>x-2=-1
=> x=1
Vậy...
Bài 1:
Cho E = \(\frac{1}{x+\sqrt{x}}\)
Tìm x thuộc Z để E có giá trị nguyên.
Bài 2:
Cho F = \(\frac{3}{x+\sqrt{x}+1}\)
Tìm x thuộc Z để F có giá trị nguyên.
cho \(E=\frac{5-x}{x-2}\)
Tìm x thuộc Z để:
a,E thuộc Z
b,E có GTNN
Cho n thuộc Z. Chứng minh n\(^2\) chia cho 3 dư 1 hoặc 0
Cho phân số E= \(\frac{x-5}{x+2}\) ( x thuộc Z; x khác -2). Tìm x để E thuộc Z
cho E= x-1/x+3, tìm x thuộc Z để E thuộc Z
Để E nguyên thì x-1 / x+3 nguyên , tức là x-1 chia hết cho x+3 hay x+3-4 chia hết cho x+3 . Từ đó suy ra -4 chia hết cho x+3 hay x+3 là ước của -4 . Còn lại bạn tự làm nha...Thanks
Cho E = \(\frac{5-x}{x-2}\)tìm x thuộc Z để e có giá trị nguyên .
Ta có :
\(E=\frac{5-x}{x-2}=\frac{5-\left(x-2\right)-2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}\)\(-1\)
\(\Rightarrow x-2\inƯ\left(3\right)\)mà Ư(3) = {-3;-1;1;3} => \(x-2\in\left\{-3;-1;1;\right\}\)
\(\Rightarrow x\in\left\{-1;1;3;5\right\}\)
Ủng hộ mk nha!!!
Để E nguyên thì 5 - x chia hết cho x - 2
Mà x -2 chia hết cho x -2
=> ( 5 - x ) + ( x - 2 ) chia hết cho x -2
=> 3 chia hết cho x -2
=> x -2 thuộc Ư(3) = { -3 ; -1 ; 1 ;3}
=> x thuộc { -1 ; 1 ; 3 ; 5}
\(\frac{5-x}{x-2}=\frac{5-\left(x-2\right)-2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
<=> x - 2 thuoc U( 3 ) = { -1 ; - 3 ; 1 ; 3 }
=> x = 1 ; -1 ; 3 ; 5