\(\frac{1}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
Tính nhanh:
A=\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
B=\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}\)
A = \(\frac{-79}{90}\)
B = \(\frac{8}{9}\)
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
BN mún hỏi j vậy, đây k phải câu hỏi, mà có thì phải là toán lớp 6
\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{3}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}x\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{-2}{21}\)
\(\Rightarrow\frac{x}{3}=\frac{-2}{21}\div\frac{1}{42}\)
\(\Rightarrow\frac{x}{3}=-4\)
\(\Rightarrow\frac{x}{3}=\frac{-12}{3}\)
\(\Rightarrow x=-12\)
Tính nhanh:
\(\frac{1}{3} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42}\)
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
= \(\frac{1}{3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{6.7}\)
= \(\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{6}-\frac{1}{7}\)
= \(\frac{1}{3}+\frac{1}{3}-\frac{1}{7}\)
= \(\frac{11}{21}\)
Tìm x biết:
\(\frac{1}{3}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}=x-\frac{5}{18}\)
\(\frac{1}{3}-\left(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{7.8}\right)=x-\frac{5}{18}\)
\(x-\frac{5}{18}=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(x-\frac{5}{18}=\frac{1}{3}-\frac{1}{3}+\frac{1}{8}\)
\(x-\frac{5}{18}=0+\frac{1}{8}\)
\(x-\frac{5}{18}=\frac{1}{8}\)
\(x=\frac{1}{8}+\frac{5}{18}\)
\(x=\frac{9}{72}+\frac{20}{72}\)
\(x=\frac{29}{72}\)
1/3 - 1/12 - 1/20 - 1/30 - 1/42 - 1/56 = x - 5/18
1/4 - 1/20 - 1/30 - 1/42 - 1/56 = x - 5/18
1/5 - 1/30 - 1/42 - 1/56 = x - 5/18
1/6 - 1/42 - 1/56 = x - 5/18
1/7 - 1/56 = x - 5/18
1/8 = x - 5/18
x=1/8+5/18
x= 29/72
Vậy : x = 29/72
\(\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)x\frac{x}{3}=\frac{5}{21}\)
tìm x
\(\Leftrightarrow\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{7}\right)\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\frac{5}{14}\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Leftrightarrow x=2\)
\(\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{7}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{7}{14}-\frac{2}{14}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{5}{14}.\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{x}{3}=\frac{5}{21}:\frac{5}{14}\)
\(\Rightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
Đặt \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(\Rightarrow A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
\(\Leftrightarrow\frac{5}{14}.\frac{4}{3}x=\frac{5}{14}\)
\(\Rightarrow\frac{4}{3}.x=\frac{5}{21}:\frac{5}{14}\)
\(\Rightarrow x=2\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
1/2+1/6+1/12+1/20+1/30+1/42
=1/1×2+1/2×3+1/3×4+1/4×5+1/5×6+1/6×7
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7.
Tích mk nha
1/2+1/6+1/12+1/20+1/30+1/42
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=??\)
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
= 1/1 - 1/7
= 7/7 - 1/7
= 6/7
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)