Tinh tong 1+a+a2+a3+...+an
cho day so a1,a2,a3,.....Biet a2=3,a2012=2013,an=an+an+1.tinh
S=a1+a2+a3+.......+a2010
Tim STN n lon nhat sao cho so 2015 bang tong cua n so a1,a2,a3,...,an trong do tat ca cac so a1,a2,a3,...,an deu la hop so
Chứng minh rằng nếu a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
CMR nếu \(\dfrac{a1}{a2}=\dfrac{a2}{a3}=\dfrac{a3}{a4}=...=\dfrac{an}{an+1}\) thì:
\(\left(\dfrac{a1+a2+a3+...+an}{a2+a3+a4+...+an+1}\right)^n=\dfrac{a1}{an+1}\)
Lời giải:
Đặt $\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=t$
Áp dụng TCDTSBN:
$t=\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}$
$\Rightarrow t^n=\left[\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}\right]^n(*)$
Lại có:
$\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_n}{a_{n+1}}=t.t.t....t$
$\Rightarrow \frac{a_1}{a_{n+1}}=t^n(**)$
Từ $(*)$ và $(**)$ ta có:
$\left[\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}\right]^n=\frac{a_1}{a_{n+1}}$ (đpcm)
Cho a1/a2=a2/a3=a3/a4=an-1/an=an/a1 ( a1+a2+...+an#0 )
Tính
1) A=a1^2+a2^2+...+an^2/(a1+a2+...+an)^2
2) B=a1^9+a2^9+...+an^9/(a1+a2+...+an)^9
cho a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
hộ mk giúp nha nhanh lên mk cần gấp lắm
Cho a1/a2=a2/a3=a3/a4=...=an-1/an=an/a1
Tính: 1)A=a1^2+a2^2+...+an^2/(a1+a2+...+an)^2
2)B=a1^9+a2^9+...+an^9/(a1+a2+...+an)^9
tim so tu nhien n lon nhat sao cho so 2015 bang tong cua n so a1, a2,.....,an trong do tat ca cac so a1, a2, a3, .....an deu la hop so
tim so tu nhien n lon nhat sao cho so 2015 bang tong cua n so a1, a2,.....,an trong do tat ca cac so a1, a2, a3, .....an deu la hop so
CHO 20 SO NGUYEN KHAC 0 : a1;a2;a3;a4;a5;a6;...;a20 CO CAC TINH CHAT SAU :a1 LA SO DUONG ;TONG 3 SO LIEN TIEP BAT KI LA SO DUONG ; TONG 20 SO LA 1 S AM .CHUNG TO a1 LA SO AM ; a3 LA SO DUONG