Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dung Lê
Xem chi tiết
NONAME
Xem chi tiết
Jenny Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 5 2016 lúc 12:59

Ta có : \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\ge\left(\sqrt{a^2b^2}+\sqrt{b^2c^2}+\sqrt{c^2d^2}\right)^2=\left(ab+bc+cd\right)^2\) (áp dụng bđt Schwartz)

Dấu " = " xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Do đó, kết hợp cùng giả thiết suy ra đpcm

Khánh Russew
Xem chi tiết
Nguyễn Văn Tuấn Anh
30 tháng 7 2019 lúc 20:36

Ta có: \(a+b+c+d=a^2+b^2+c^2+d^2\)

\(\Rightarrow\orbr{\begin{cases}a=b=c=d=1\\a=b=c=d=0\end{cases}}\) 

mà \(a^2+b^2+c^2+d^2=4\Rightarrow a=b=c=d=1\) 

\(\Rightarrow ab+bc+cd+ad=1+1+1+1=4\) 

Vậy.....

Tuyển Trần Thị
Xem chi tiết
VFF
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
Nguyễn Lê Thụ
Xem chi tiết
fan anime
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 19:50

Mình giải câu a còn các câu khác tương tự nha !

a, a/b=c/d

=> a/c=b/d

Đặt a/c=b/d=k

=> a=ck ; b=ck

=> a^2+c^2/b^2+d^2 = c^2k^2+c^2/d^2k^2+d^2 = c^2.(k^2+1)/d^2.(k^2+1) = c^2/d^2

Mà a/b=c/d => c^2/d^2 = a/b . c/d = ac/bd

=> a^2+c^2/b^2+d^2 = ac/bd

=> ĐPCM

Tk mk nha

Thanh Tùng DZ
13 tháng 1 2018 lúc 19:50

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

Mà \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)