so sánh 1999/2000 + 2000/2001 và 1999+2000/2000+2001
So sánh: A=1999/2000+2000/2001 và B=1999+2000/2000+2001
\(B=\frac{1999+2000}{2000+2001}\)
\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Vì \(\frac{1999}{2000+2001}< \frac{1999}{2000}\) ; \(\frac{2000}{2000+2001}< \frac{2000}{2001}\)
\(\Rightarrow\)\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)< \(A=\frac{1999}{2000}+\frac{2000}{2001}\)
\(\Rightarrow\)B < A
Vậy B < A
so sánh 1999*2000/1999*2000+1 và 2000*2001/2000*2001+1
vì 2 phan số = 1 nên khi cộng với 1 thì = 2 mà 2= 2 nên 2 phân số bằng nhau
So sánh 1999×2000 / 1999×2000+1 và 2000×2001 / 2000×2001 + 1
So sánh 1999×2000/1999×2000+1 & 2000×2001/2000×2001
< đó bn
cái đầu thì mẫu hơn tử 1 => cái đầu < 1
cái 2 tử mẫu = nhau => =1
====> cái đầu< cái 2 (nhìn tưởng phức tạp )
đúng nha mk pải off đây
So sánh : \(\frac{1999×2000}{1999×2000+1}\)và \(\frac{2000×2001}{2000×2001+1}\)
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
Hãy so sánh:
C= 1999*2000/1999*2000+1 và D= 2000*2001/2000*2001+1
Giúp mk nha và mog mọi người sẽ cho mik cak làm nữa!
thak you!!!!!!!!!!
so sanh phân số: 1999*2000/1999*2000+1 và 2000*2001/2000*2001+1
không tính kết quả,hãy so sánh:
M=1999*2001 và N=2000*2000
Dễ:
M=1999x(2000+1) N=2000x(1999+1)
M=1999x2000+1999x1 N=2000x1999+2000x1
Ta có:1999x1<2000x1
Cả M và N đều có chung 1999x2000
Suy ra M<N
Ta có M = 1999 x 2001 = 1999 x ( 2000 + 1)
suy ra M = 1999 x 2000 + 1999 (1)
Mặt khác : N = 2000 x 2000 = 2000 x ( 1999 + 1 )
suy ra : N = 2000 x 1999 + 2000 (2)
Từ ( 1) và (2) suy ra N > M
Từ (1) và (2) suy ra N >
Không tính ; so sánh A = 1999 * 2001 và B = 2000 * 2000
Ai nhanh và đúng sẽ được 6 like nhe
Nhớ nhé:
A=1999x(2000+1) B=(1999+1)x2000
=1999x2000+1999 =1999x2000+2000
Vì 1999<2000=>A<B
Ta có: 1999 x 2001 = 1999 x (2000 + 1) = 1999 x 2000 + 1999 x 1
2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000 x 1
Vì 1999 x 2000 + 1999 < 2000 x 1999 + 2000 nên 1999 x 2001 < 2000 x 2000
1999.2001=1999.(2000+1)=1999.2000+1999
2000.2000=(1999+1).2000=1999.2000+2000
1999.2000+1999<1999.2000+2000
1999.2001<2000.2000