Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Huy
Xem chi tiết
Đặng Lê Anh Thư
Xem chi tiết
Ko Quan Tâm
12 tháng 2 2016 lúc 14:59

ủng hộ mình lên 280 điểm với các bạn

Đỗ tuấn anh
Xem chi tiết
kirito ( team fa muôn nă...
30 tháng 5 2021 lúc 20:37

Xét biểu thức A 

A= 1+(1+2) +....... +(1+2+3+...+2012)

A = 1+1+2+1+2+3+...+1+2+3+...+2012

 A có 2012  số 1

      có 2011  số 2

         ...

        có 1 số 2012

A = 1 x2012 +2x2011+...+2012x1

 mà B = 1 x2012 +2x2011+...+2012x1

nên A=B

Đỗ tuấn anh
Xem chi tiết
Đoàn Đức Hà
27 tháng 5 2021 lúc 9:31

\(A=1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2012\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+...+2012\)

\(=1\times2012+2\times2011+...+2012\times1\)

\(=B\)

Khách vãng lai đã xóa
thongocute
Xem chi tiết
Nguyễn Tuấn Minh
5 tháng 4 2017 lúc 11:43

Bạn kiểm tra lại đề nhé, hình như đề hơi có vấn đề

Nguyễn Đức Cảnh
Xem chi tiết
Ngô Chi Lan
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
Trần Thị Loan
6 tháng 4 2015 lúc 23:35

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

Bụng ღ Mon
1 tháng 10 2017 lúc 15:23

Trần Thị Loan tại sao lại + 5/2?

tranluuduyenha
25 tháng 4 2018 lúc 8:44

ngu thế Bụng Mon

Vũ Thị Kim Thu
Xem chi tiết
Tẫn
28 tháng 4 2019 lúc 16:40

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\)

\(\Rightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\right)\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\)

\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\)

\(\Rightarrow6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\right)\)

\(\Rightarrow4A=3-\frac{2012}{3^{2011}}\)

\(\Rightarrow A=\frac{3-\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{2012}{3^{2011}.4}\)

\(\Rightarrow A< \frac{3}{4}\)

Vũ Thị Kim Thu
29 tháng 4 2019 lúc 7:50

cảm ơn đă giải giup

ACE
Xem chi tiết