tính \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
tính : \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{36}+\frac{1}{45}\)
Đặt A = 1/2 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/36 + 1/45
=> 1/2A = 1/4 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/72 + 1/90
= 1/4 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/8.9 + 1/9.10
= 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
= 1/4 + 1/2 - 1/10
= 5/20 + 10/20 - 2/20
= 13/20
=> A = 13/20 : 1/2 = 13/10
Đặt A = 1/2 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/36 + 1/45
=> 1/2A = 1/4 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/72 + 1/90
= 1/4 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/8.9 + 1/9.10
= 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10
= 1/4 + 1/2 - 1/10
= 5/20 + 10/20 - 2/20 = 13/20
=> A = 13/20 : 1/2 = 13/10
đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{36}+\frac{1}{45}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{13}{20}\)
\(\frac{1}{2}A\times2=A=2\times\frac{13}{20}=\frac{13}{10}\)
\(\text{Tính tổng }A=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{36}+\frac{1}{45}\)
Ta co:
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{72}+\frac{1}{90}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{4}+\frac{1}{2}-\frac{1}{10}=\frac{13}{20}\Rightarrow A=\frac{13}{10}.\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{36}+\frac{1}{45}\)
\(A=\frac{2}{4}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{72}+\frac{2}{90}\)
\(A=\frac{2}{2.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
\(A=2\left(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=2.\frac{2}{5}\)
\(A=\frac{4}{5}\)
~ Học tốt ~ K cho mk nhé! Thank you.
tính nhanh \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}\)
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220
Tính nhanh
\(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)\(\frac{1}{45}\)
Nhanh tk !!
A=1+(1/6+1/12+1/20+...+1/90):2
A=1+(1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10):2
A=1+(1/2-1/10):2
A=1+2/5:2
A=1+1/5
A=6/5
Vậy A=6/5 nha bạn
Đúng 100%
k mk nha
Mk nhanh nhất
\(A=1+\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{90}\right):2\)
\(A=1+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right):2\)
\(A=1+\left(\frac{1}{2}-\frac{1}{10}\right):2\)
\(A=1+\frac{2}{5}:2=1+\frac{1}{5}=\frac{6}{5}\)
vậy...
Tính nhanh:\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=2.\frac{2}{5}=\frac{4}{5}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{4}{5}\)
\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+........+\(\frac{1}{45}\)
=\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+\(\frac{2}{30}\)+..........+\(\frac{2}{90}\)
=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+\(\frac{2}{4.5}\)+\(\frac{2}{5.6}\)+...........+\(\frac{2}{9.10}\)
=2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+.........+\(\frac{1}{9.10}\))
=2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{6}\)+.......+\(\frac{1}{9}\)-\(\frac{1}{10}\))
=2.(\(\frac{1}{2}\)-\(\frac{1}{10}\))
=2.\(\frac{2}{5}\)
=\(\frac{4}{5}\)
tính nhanh giá trị của biểu thức: A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
Tính
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2004\times2005}+\frac{1}{2005\times2006}=A\)
\(\frac{1}{6}+\frac{2}{15}+\frac{4}{45}+\frac{2}{99}+\frac{10}{600}=A\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=1-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
\(1)A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2004.2005}+\frac{1}{2005.2006}\)
\(\implies A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(\implies A=1-\frac{1}{2006}\)
\(\implies A=\frac{2005}{2006}\)
1+\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(=1+\frac{1}{1.3}+\frac{1}{3.2}+\frac{1}{2.5}+\frac{1}{5.3}+\frac{1}{3.7}+\frac{1}{7.4}+\frac{1}{4.9}+\frac{1}{9.5}\)
\(=1+1-\frac{1}{5}\)
\(=\frac{10}{5}-\frac{1}{5}\)
\(=\frac{9}{5}\)
Ai thấy đúng thì
Tính nhanh nếu có thể:
a)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
b)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
a) \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{14}{30}=\frac{7}{15}\)
a)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=2\left(1-\frac{1}{15}\right)\)
\(=2.\frac{14}{15}\)
\(=\frac{28}{15}\)
b)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}+\frac{2}{10.11}+\frac{2}{11.12}\)
\(...\)