1/x + 2016/2015=2015/2014 +1/x + 1
( 2013 x 2014 x 2014 x 2015 + 2015 x 2016 ) x 1+1/3 - 1 và 1/3 )
Ta tính vế sau:
1+1/3-1+1/3=0
Vì đây là phép nhân nên nếu có một vế bằng 0 thì vế sau cx bằng 0
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2
tính nhanh : ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 và 1/3 )
( 2013 x 2014 +2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 - 1/3 )
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0
= 0
Tính giá trị của biểu thức
x^2016 - 2015*x^2015-2015*x^2014-....-2015*x+1 tại x=2016
Tính:
B=x^2016 - 2015.x^2015 - 2015.x^2014 - ... - 2015.x^2 - 2015.x+1
x=2016
Thay x = 2016 vào biểu thức B, ta có:
B = 20162016 - 2015.20162015 - 2015.20162014 - ... - 2015.20162 - 2015.2016 + 1
B = 20162016 - (2016 - 1).20162015 - (2016 - 1).20162014 - ... - (2016 - 1).20162 - (2016 - 1).2016 + 1
B = 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016 + 1
B = (20162016 - 20162016) + (20162015 - 20162015) + ... + (20162 - 20162) + (2016 + 1)
B = 2016 + 1 = 2017
Vậy ...
Tìm x thuộc Z biết:
1) 2016+2015+2014+...+x = 2016
2) 1+2+3+...+x = 1275
3) | x+2015 | + | x+2016| = 1
thiện xạ 5a3 có thể giải chi tiết ra đc k? Mk cần cách lm
2) 1+2+3+...+x=1275
Có SSH là: (x+1):1+1=x(SH)
=> (x+1).x:2=1275
=>(x+1).x=1275.2
=>(x+1).x=2550
=>(x+1).x=51.50
=>x=50
3) |x+2015|+|x+2016|=1
Ta thấy |x+2015| và |x+2016| > hoặc = 0 với mọi x
=> 1= 0+1=1+0
+) x+2015=0=>x=-2015
x+2016=1=>x=-2015
+) x+2015=1=>x=-2014
x+2016=0=> x=-2016
Vậy xE{...}
tính bằng cách thuận tiện nếu có thể: ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 1 + 1/3 - 4/3)
( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 1 + 1/3 - 4/3)
=( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 4/3 - 4/3)
=( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x 0
=0
Ta có: \(\left(2013\cdot2014+2014\cdot2015+2015\cdot2016\right)\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(=\left(2013\cdot2014+2014\cdot2015+2015\cdot2016\right)\left(\dfrac{3}{3}+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
=0
Tim x; (1/2+ 1/3+ ...+1/2016).x=2015/1+ 2014/2+ ... +1/2015
P(x)=x^2016-2015 x^2015-2015x^2014-...-2015x^2-2015x=1.tính P(2016)
P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x
<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x
<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016
<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016
<=> P(2016) = 2016
Vậy P(2016) = 2016
Ta có:
P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1
P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1
P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ..... - 20163 + 20162 - 20162 + 2016 - 1
P(2016) = 2016 - 1
P(2016) = 2015.
cái chỗ bằng 1 là cộng 1 đấy
tek tức là nó = 2017
đúng không