Tìm giá trị của a để \(\frac{6\text{a}+15}{4\text{a}+1}\)thuộc Z và đạt giá trị lớn nhất. Gía trị lớn nhất đó là bao nhiêu.
\(C=\frac{3\text{|}x\text{|}+2}{4\text{|}x\text{|}-5}\)
a. Tìm x thuộc Z để C đạt giá trị lớn nhất, tìm giá tri lớn nhất đó.
b. Tìm x thuộc Z để C là số tự nhiên
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
Cho phân số:\(A=\frac{8n+193}{4n+3}\)(n thuộc N). Với giá trị nào của n để :
a. A có giá trị lớn nhất. Giá trị lớn nhất là bao nhiêu?
b.A có gía trị nhỏ nhất. Giá trị nhỏ nhất là bao nhiêu?
a) A có GTLN <=> 8n + 193 có GTLN và 4n + 3 có GTNN <=> ....
b) A có GTNN <=> 8n + 193 có GTNN và 4n + 3 có GTLN <=> ...
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
Cho phân số A = \(\frac{6n-4}{2n+3}\)n thuộc Z
a, Tìm n để A nhận giá trị là số nguyên
b, tìm n để A đạt giá trị lớn nhất và tính giá trị đó
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2
A = \(\frac{15-2x}{6-x}\)
a, Tìm x để A có giá trị bằng \(\frac{1}{2}\)
b, Tìm x thuộc Z để A có giá trị lớn nhất và tìm giá trị lớn nhất đó
a) A =1/2 => 2( 15 -2x ) =6- x
=> 4x -x = 30 -6 => 3x =24 => x =8
b) \(A=\frac{2x-15}{x-6}=2-\frac{3}{x-6}\)
A thuộc Z => x -6 thuộc Ư(3) ={ -3;-1;1;3}
Max A = 2 +3 =5 khi x - 6 = -1 => x =5
Tìm a,b thuộc Z để:
a) E = \(\frac{3}{4-a}\) đạt giá trị lớn nhất
b) A= \(\frac{9-b}{b+3}\) đạt giá trị lớn nhất và giá trị nhỏ nhất
\(E=\frac{3}{4-a}\)đạt giá trị lớn nhất khi:
4-a đạt giá trị nhỏ nhất khi:
a đạt giá trị lớn nhất(4-a không bằng 0 nên a không bằng 4)
nên a=1