Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị khánh linh
Xem chi tiết
bui hieu
Xem chi tiết
Dang Nhan
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Lê Hoàng Mai
Xem chi tiết
Le Phuc Thuan
Xem chi tiết
Bùi Thế Hào
20 tháng 2 2017 lúc 17:38

Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0

Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)

=> x=2009; y=2010; z=2011

timeless
20 tháng 2 2017 lúc 17:26

x=2009

y=2010

z=2011

Moon Moon
Xem chi tiết
Nguyễn Khánh Minh Dũng 2
Xem chi tiết
Nguyễn Đức Trí
8 tháng 9 2023 lúc 12:46

\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\left(1\right)\)

\(Đkxđ:x\ne2009;x\ne2010\)

Đặt \(t=x-2010\left(t\ne0\right)\)

\(\Rightarrow2009-x=-\left(t+1\right)\)

\(\left(1\right)\Leftrightarrow\dfrac{\left(t+1\right)^2-\left(t+1\right)t+t^2}{\left(t+1\right)^2+\left(t+1\right)t+t^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{t^2+2t+1-t^2-t+t^2}{t^2+2t+1+t^2+t+t^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{t^2+t+1}{3t^2+3t+1}=\dfrac{19}{49}\)

\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)

\(\Leftrightarrow8t^2+8t-30=0\)

\(\Leftrightarrow4t^2+4t-15=0\)

\(\Leftrightarrow\left(4t^2+4t+1\right)-16=0\)

\(\Leftrightarrow\left(2t+1\right)^2=16=4^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2t+1=4\\2t+1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3}{2}\\t=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2010=\dfrac{3}{2}\\x-2010=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4023}{2}\\x=\dfrac{4015}{2}\end{matrix}\right.\)

Kiều Trinh
Xem chi tiết
Yarika chan
2 tháng 4 2015 lúc 19:37

Vì ta có 1 - 1/2010 = 0/2010 = 0 nên suy ra biểu thức A = 0

Đinh Tuấn Việt
2 tháng 4 2015 lúc 19:43

A=\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)

A=\(\frac{2009}{2010}.\frac{2008}{2010}...0.\frac{-1}{2010}\)

A=0