Tìm nghiệm nguyên của phương trình:
x+xy+y+2=0
tìm các nghiệm nguyên của phương trình:x^2-2x-11=y^2
tìm nghiệm nguyên dương của phương trình:x2-y2=6y+44
Tìm nghiệm nguyên dương của phương trình:x2(y+3)=y(x2-3)2
Tìm nghiệm nguyên của phương trình:x6+3x2+1=y4
Tìm nghiệm nguyên dương của phương trình:x3-y3=95(x2+y2)
bạn ơi ở đây toàn mấy người lp 8 trở xuống ko ak bạn nên vô trang loigiaihay để giải đáp tốt hơn nhé
tìm nghiệm nguyên phương trình:x +y + z=xyz
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
mk lấy trong trang này nè https://sites.google.com/site/toanhoctoantap/kien-thuc-toan/mot-so-phuong-phap-giai-phuong-trinh-nghiem-nguyen bn vào đó xem kĩ hơn
tìm nghiệm nguyên của phương trình:x2-4xy+5y=169
Cho phương trình:x2-m2x+2m+2=0. Tìm m\(\in\)Z+ để phương trình có nghiệm nguyên
Ta có \(\Delta=m^4-8m-8\)
Để pT có nghiệm nguyên
=> \(\Delta\)là số chính phương, \(\Delta\ge0\)
+ \(m=1\)=> \(\Delta=-15\)loại
+ \(m=2\)=> \(\Delta=-8\)loại
+ \(m=3\)=> \(\Delta=49\)
=> \(x=8;x=1\)nhận
+ m=4 => \(\Delta=216\)loại
+ \(m\ge5\)
=> \(2m^2-8m-9>0\)
=> \(\left(m^2-1\right)^2< m^4-8m-8\)
Mà \(-8m-8< 0\)với \(m\inℤ^+\)
=> \(\left(m^2-1\right)^2< m^4-8m-8< \left(m^2\right)^2\)
Lại có \(m^4-8m-8\)là số chính phương
=> không có giá trị nào của m thỏa mãn
Vậy m=3
Tìm nghiệm nguyên của phương trình : x + xy + y + 2 = 0
Tìm tất cả các nghiệm nguyên của phương trình:
x.(x2 + 2x + 4) = y3 - 3
*Sử dụng phương pháp chặn (hai đầu):
\(x\left(x^2+2x+4\right)=y^3-3\left(1\right)\)
\(\Leftrightarrow2x^2+4x+3=y^3-x^3\)
Ta có \(2x^2+4x+3=2\left(x+1\right)^2+1>0\)
\(\Rightarrow y^3-x^3>0\Rightarrow y^3>x^3\left(2\right)\)
Lại có: \(\left(x+2\right)^3-y^3=\left(x^3+6x^2+12x+8\right)-\left(x^3+2x^2+4x+3\right)=4x^2+8x+5=4\left(x+1\right)^2+1>0\)
\(\Rightarrow y^3< \left(x+2\right)^3\left(3\right)\)
Từ (2), (3) suy ra \(x^3< y^3< \left(x+2\right)^3\Rightarrow y^3=\left(x+1\right)^3\).
Thay vào (1) ta được:
\(x^3+2x^2+4x=\left(x+1\right)^3-3\)
\(\Leftrightarrow x^3+2x^2+4x=x^3+3x^2+3x+1-3\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Với \(x=2\Rightarrow y=3\)
Với \(x=-1\Rightarrow y=0\)
Vậy các nghiệm nguyên của pt (1) là \(\left(x;y\right)=\left(2;3\right),\left(-1;0\right)\)