Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Phương
Xem chi tiết
Vương Tuấn Khải
Xem chi tiết
Nguyễn Tuấn Minh
27 tháng 3 2016 lúc 18:13

Giả sử n2+2016=m2

2016=m2-n2

2016=(m-n)(m+n)

Vì 2016 là 1 số chẵn nên trong tích (m-n)(m+n) phải có ít nhất 1 số chẵn (1)

Mặt khác (m+n)-(m-n)=2n nên cả 2 số phải cùng lẻ hoặc cùng chẵn (2)

Từ (1) và (2) => Cả 2 thừa số đều là chẵn

Đặt m+n=2h

m-n=2t

Ta có 2h.2t=2016

4.(h.t)=2016

=> 2016 phải chia hết cho 4

Nhưng 2016 ko chia hết cho 4 nên ko có số nào thỏa mãn đề bài

Ủng hộ mk nha

NHÂN
27 tháng 3 2016 lúc 18:06

chtt

k

nha

.................

You silly girl
27 tháng 3 2016 lúc 18:30

cho mk xin 1 tk nha !

Gunny Xoẹt
Xem chi tiết
Sakuraba Laura
30 tháng 12 2017 lúc 7:11

Ta thấy n2 là số chính phương 

=> n2 chia cho 4 dư 0 hoặc 1

Mà 2006 chia cho 4 dư 2

=> n2 + 2006 chia cho 4 dư 2 hoặc 3

=> n2 + 2006 không là số chính phương

=> Không có số tự nhiên n thỏa mãn đề bài.

Gunny Xoẹt
30 tháng 12 2017 lúc 7:12

cảm ơn nha

Phạm Ý Nhân
2 tháng 1 2018 lúc 17:14

Bài làm

Ta thấy rõ  n2 là số chính phương 

<=> n2 chia hết cho 4  hoặc dư 1

Mà số  2006 chia cho 4 dư 2

<=> n2 + 2006 chia cho 4 dư 2 hoặc 3

<=> n2 + 2006 không là số chính phương

Vậy không có số tự nhiên n thỏa mãn đề bài.

P/s ko bt có đúng ko

lê thị thùy tiên
Xem chi tiết
Ngô Thị Hà
8 tháng 12 2015 lúc 5:15

CHTT nha bạn ! 

Bùi Đăng Kiển
8 tháng 12 2015 lúc 5:29

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Gokuto
Xem chi tiết
Lê Trần Bảo Trâm
Xem chi tiết
FC TF Gia Tộc và TFBoys...
13 tháng 2 2016 lúc 9:21

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Nguyễn Hưng Phát
13 tháng 2 2016 lúc 9:32

Giả sử n2+2006=m2(m,n thuộc Z)

=>n2-m2=2006<=>(n+m).(n-m)=2006

Gọi n-m=a;n+m=b(a,b thuộc Z)

Vì tích a và b bằng 2006 là một số chẵn ,suy ra trong a và b có ít nhất một số chẵn(1)

Mặt khác ta có:a+b=(n-m)+(n+m)=2n là một số chẵn ,suy ra a và b cùng chẵn hoặc cùng lẻ(2)

Từ (1) và (2) suy ra a  và b đều là số chẵn

Suy ra a=2k,b=2l(k,l thuộc Z)

Theo như trên ta có:a.b=2006 hay2k.2l=2006 hay 4.k.l=2006

Vì k,l là số nguyên nên 2006 phải chia hết cho 4(vô lý vì 2006 không chia hết cho 4)

Vậy không tồn tại n thỏa mãn bài toán

Đặng Minh Trí
Xem chi tiết
Phạm xuân phát
Xem chi tiết
Nguyen Thi Kim Loan
14 tháng 2 2016 lúc 10:25

câu hỏi tương tự nha bạn

Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 10:26

bai toan nay kho @gmail.com

Phạm xuân phát
14 tháng 2 2016 lúc 10:28

thì sao bạn

 

Phan Tùng Dương
Xem chi tiết
Yume To Hazakura
26 tháng 5 2018 lúc 8:03

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số