CMR
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
CMR:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)\(\frac{2}{3}\)
ta có
\(\frac{1}{300}< \frac{1}{101}\); \(\frac{1}{300}< \frac{1}{102}\); \(\frac{1}{300}< \frac{1}{102}\)....\(\frac{1}{300}< \frac{1}{299}\)
\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}< \frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)
\(\frac{200}{300}< \frac{1}{101}+\frac{1}{102}+...+\text{}\text{}\)
rút gọn là xong
Chứng tỏ rằng\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
Chứng tỏ rằng \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
1/101+1/102+...+1/299+1/300>2/3>1/300+1/300+1/300=200/300=2/3
vay 1/101+1/102+..+1/299+1/300>2/3
Chứng minh rằng
\(\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{299}+\frac{1}{300}\) > \(\frac{2}{3}\)
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)( có 200 số )
Ta có
\(\frac{1}{101}>\frac{1}{300}\); \(\frac{1}{102}>\frac{1}{300}\); ...;\(\frac{1}{299}>\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}+\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}.200\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{2}{3}\)( dpcm )
Ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\Rightarrowđpcm\)
Ta có: \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}.200=\frac{200}{300}=\frac{2}{3}\)
Vậy \(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{300}>\frac{2}{3}\)
Chứng tỏ rằng
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}\)>\(\frac{2}{3}\)
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300 =>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+ (1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6 Mà 5/6>2/3
=> A > 2/3 Vậy 1/101+1/102+1/103+...+1/300 >2/3
Chứng tỏ rằng: \(E=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}< \frac{2}{3}\)
\(F=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 2\)
Chứng tỏ rằng:
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
Lưu Ý :
Tớ biết làm nhưng vẫn hỏi!
Bạn nào không biết thì nói tớ tớ làm luôn cho
◥ὦɧ◤ᗰIᑎᕼ™ᐯY™=ε/̵͇̿̿/'̿'̿ ̿ ̿̿ ̿̿ ̿̿
theo tớ nghĩ:
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}.200=\frac{2}{3}\)
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}\)
Ta có:
\(\frac{1}{101}>\frac{1}{300}\)
\(\frac{1}{102}>\frac{1}{300}\)
..........................
\(\frac{1}{299}>\frac{1}{300}\)
\(\frac{1}{300}=\frac{1}{300}\)
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\)
\(\Rightarrow VT>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\) (ĐPCM)
\(\frac{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}\right)}{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+\frac{1}{104}+...+\frac{1}{400}\right)}\)
G mk với, mk cần gấp lắm. Ai giải được mk k cho
Chứng tỏ rằng : \(\frac{1}{101}\) + \(\frac{1}{102}\) +....+\(\frac{1}{299}\)+\(\frac{1}{300}\) > \(\frac{2}{3}\)
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>200.\frac{1}{300}\)
\(>\frac{2}{3}\)
có tất cả 200 số hạng.
mà 1/300 x 200 = 2/3
có 1/101>1/300
1/102>1/300
...
1/299>1/300
1/300=1/300
suy ra 1/101 + 1/102 + ... +1/299 +1/300 > 1/300 + 1/300 +...+ 1/300 + 1/300 =1/300 x 200=2/3