chứng minh rằng P=1+3+32+33+...+362 không là số chính phương
. Các tổng sau đây có là số chính phương không? a) T = 1 + 3 + 32 + 33 + … + 361 + 362 b) M = 5 + 52 + 53 + …+ 580 .
. Các tổng sau đây có là số chính phương không? a) T = 1 + 3 + 32 + 33 + … + 361 + 362 b) M = 5 + 52 + 53 + …+ 580 .
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
Chứng minh rằng B=3+32+3+...+399 không là số chính phương
4. Các tổng sau đây có là số chính phương không?
a) T = 1 + 3 + 32 + 33 + … + 361 + 362
b) M = 5 + 52 + 53 + …+ 580
Ai làm nhanh nhất đúng nhất mik sẽ tích . giải lun dùm mik
Books have been one of my best friends which have supported me in every step of my life. And the one that I have the deepest impression on is “The miracle of the Namiya general store” .
The book is about three delinquents who were running away from their wrongdoings then accidentally found an old house and hid there for the night. The house turned out to be an abandoned general store where people could seek advice for their troubles by leaving a letter in the mailbox. Miracle happened when the time line somehow switched and letters from 30 years ago were delivered to them. Although none of them ever seriously considered others’ problems, something from the inside urged them to write responses to the troubled people, on behalf of Namiya – the old owner.
“ Miraculous” is exactly how I want to describe this book. No need for dogma lessons, it presents the value of kindness and compassion through different short stories that are linked perfectly together and leaves me hopeful about human nature. The past, present and future are combined flexibly, which creates many a surprise to me. How did the letters change people’s lives? Could the delinquents - whose past was covered by darkness – be awoken and open their hearts to heal the grieving souls? The story presents an open ending but I have got the answer of my own. To any book lovers especially those who have interest in soothing and touching stories, “The miracle of the Namiya general store” by Higashino Keigo is the one that should not be missed.
TƯỞNG GÌ KHÓ , THAM KHẢO NHA BẠN
Bài 1. Chứng minh rằng tổng của 4 số chính phương liên tiếp không thể là một số chính phương.
Bài 2. Chứng minh rằng tổng của 5 số chính phương liên tiếp không thể là một số chính phương.
Bài 3. Cho bốn chữ số 0,2,3,4. Tìm số chính phương có 4 chữ số được tạo bởi cả 4 chữ số trên.
Bài 4. Tìm số nguyên tố p thỏa mãn
a) p 2 + 62 cũng là số nguyên tố.
b) p 2 + 14 và p 2 + 6 cũng là số nguyên tố.
A=3+32+33+.....+320
Số trên là số chính phương hay không phải là số chính phương
Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
Chứng minh rằng S=1+3^1+3^2+3^4+...+3^30 không phải là số chính phương
Cho A= 1-32+34-36+...+376-378. Chứng minh rằng 1-10A là một số chính phương
\(9A=3^2-3^4+3^6-3^8+...+3^{78}-3^{80}\)
\(10A=9A+A=1-3^{80}\)
\(\Rightarrow1-10A=3^{80}=\left(3^{40}\right)^2\) là số chính phương