Cho tam giác ABC cân tại A , đường cao AH và đường trung tuyến BM cắt nhau tại G
a) CM: G là trọng tâm của tam giác
b) cho AB=15cm, BC=18cm. Tính BM
c) CM: 2(AH+BM)<3(AC+BC)
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H
A, cm tam giác ABC = tam giác ANH
B, vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Cm G là trọng tâm của tam giác ABC
C, cho AB=30cm, BH=18cm, . Tính AH, AG
D, từ H kẻ HD song song với AC ( D thuộc AB) . Cm 3 điểm C,G,D thẳng hàng
ch tam giác ABC cân tại A . kẻ AH vuông góc BC tại H .a, cm tam giác ABH=tam giác ACH
b, vẽ trung tuyến BM. gọi G là giao điểm của AH và BM . chứng minh G là trọng tâm của tam giác ABC
c, cho AB=30cm , BH =18cm . Tính AH , AG
d, từ H kẻ HD song song với AC ( D € AB ) . cm 3 điểm C;G;D thẳng hàng.
Cho tam giác ABC cân tại A. Kẻ AH \(\perp\)BC tại H
a, Cm : Tam giác ABH = Tam giác ACH
b, Vẽ trung tuyến BM . Gọi G là giao điểm của AH và BM . Chứng minh G là trọng tâm của tam giác ABC
c,Cho AB=30cm , BH=18cm .Tính AH , AG
d, Từ H kẻ HD song song với AC ( D thuộc AB) . CHứng minh 3 điểm C,G,D thẳng hàng
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC
a) cm: tam giác ABH = tam giác ACH
b) Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Cm: G là trọng tâm của tam giác ABC
c) Cho AH=30cm, BH=18cm. Tính AH, AG, BG
d) Từ H kẻ HD song song với AC (D thuộc AB). Cm: C, G, D thẳng hàng
e) Cm: HM song song với AB
f) Cm: MD song song với BC
g) Gọi O là trung điểm MD. Cm: O, G, H thẳng hàng
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC
a) cm: tam giác ABH = tam giác ACH
b) Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Cm: G là trọng tâm của tam giác ABC
c) Cho AH=30cm, BH=18cm. Tính AH, AG, BG
d) Từ H kẻ HD song song với AC (D thuộc AB). Cm: C, G, D thẳng hàng
e) Cm: HM song song với AB
f) Cm: MD song song với BC
g) Gọi O là trung điểm MD. Cm: O, G, H thẳng hàng
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC
a) cm: tam giác ABH = tam giác ACH
b) Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Cm: G là trọng tâm của tam giác ABC
c) Cho AH=30cm, BH=18cm. Tính AH, AG, BG
d) Từ H kẻ HD song song với AC (D thuộc AB). Cm: C, G, D thẳng hàng
e) Cm: HM song song với AB
f) Cm: MD song song với BC
g) Gọi O là trung điểm MD. Cm: O, G, H thẳng hàng
cho tam giác ABC cân tại A. kẻ AH vuông góc BC tại H
a) CM tam giác ABH= tam giác ACH
b) vẽ trung tuyến BM, gọi G là giao điểm của AH và BM. CM G là trọng tâm cuẩ tam giác ABC
c) CHo AB= 30cm, BH= 18 cm. Tính AH<,AG
d) Từ H kẻ HD// với AC ( D thuộc AB) CM 3 điểm C,G,D thẳng hàng
xét tam giác BMC có:
CA vuông góc với BM (gt) => CA đường cao tam giác BMC
MK vuông góc với BC (cmt) => MK đường cao tam giác BMC
Mà CA cắt MK tại D (gt)
từ 3 điều đó => BD là đường cao thứ 3 của tam giác BMC
=> BD vuông góc với CM ( t/c )
k nha,
a) Xét tam giác vuông ABH và tam giác vuông ACH có
AB=AC( vì tam giác ABC cân tại A)
Cạnh AH chung
=> Tam giác ABH= tam giác ACH ( cạnh huyền- cạnh góc vuông)
b) Có tam giác ABH= tam giác ACH ( theo câu a)
=> BH=CH ( 2 cạnh tương ứng)
=> AH là trung tuyến của tam giác ABC
G là giao điểm của 2 đường trung tuyến AH và BM
=> G là trọng tâm của tam giác ABC
c) Xét tam giác ABH tại H có \(AB^2=AH^2+BH^2\)
=>302=AH2+182
=>AH2=302-182=576
=>AH=24
Có G là trọng tâm của tam giác ABC
=> \(AG=\frac{2}{3}AH=\frac{2}{3}.24=16\)
Vậy AH=24 cm, AG=16 cm
d) Tam giác vuông GHB và tam giác vuông GHC có
Cạnh GH chung
BH=CH
=> tam giác GHB= tam giác GHC ( 2 cạnh góc vuông)
=>Góc GBH= góc GCH
=> ABC-GBH=ACB-GCH
=> góc ABM= góc ACD
Xét tam giác ADC và tam giác AMB có
góc A chung
AB=AC
ABM=ACD
=> tam giác ADC= tam giác AMB
=> AD=AM
Tam giác DAG và tam giác GAM có
AD=AM
DAG=GAM( vì AG là đường cao của tam giác cân ABC đồng thời là đường phân giác)
Cạnh AG chung
=> \(\Delta DAG=\Delta GAM\) (c.g.c)
=> AD=AM
Có AM=MC =>AD=MC
Ta có AB-AD=AC-AM
=>DB=MC
=>AD=DB
=> CD là đường trung tuyến của tam giác ABC
=> C,G,D thẳng hàng
Cho tam giác ABC cân tại A, đường cao AH và trung tuyến BK cắt nhau tại G. Tia CG cắt AB tại I
Cho tam giác ABC cân tại A; đường cao AH và trung tuyến BK cắt nhau tại G. Tia CG cắt AB tại I
a, Chứng minh tam giác AIG = tam giác AKG
b, Biết AH = 18 cm, BC = 16cm. Tính độ dài đoạn thẳng GI
c, Chứng minh IK // BC
Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG
b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
góc IAG = góc KAG (cmt)
AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)
c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC
refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG
b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
góc IAG = góc KAG (cmt)
AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)
c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC