Thực hiện dãy tính ( tính nhanh neus có thể)
I=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
Thực hiện dãy tính ( tính nhanh neus có thể)
I=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I=1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I=1-1/2010
I=2009/2010
Vậy I=2009/2010
I = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I = 1-1/2010
I = 2009/2010
Chúc bạn học tốt nha
ta thấy: 1/1 - 1/2 = 1/2 = 1/1.2
1/2 - 1/3 = 1/6 = 1/2.3
1/3 - 1/4 = 1/12 = 1/3.4
tớ nêu cách làm rùi đó
tính
I = 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2009.2010
\(I=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2009.2010}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+.....+\left(\frac{1}{2009}-\frac{1}{2009}\right)-\frac{1}{2010}\)
\(I=1-0-0-...-0-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}=\frac{2009}{2010}\)
I = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2009 - 1/2010
I = 1 - 1/2010
I = 2009/2010
Vậy I = 2009/2010
Tính 1/1.2+1/2.3+1/3.4+1/4.5+...+1/2009.2010
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2010}{2010}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
Thực hiện phép tính (tính nhanh nếu có thể): C = 1.2+2.3+3.4+...+99.100
=>3C=1.2.3+2.3.3+...+99.100.3
= 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 99.100.(101 - 98)
= 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
= 99.100.101
=>\(C=\frac{99.100.101}{3}=333300\)
\(C = 1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\)\(\left(101-98\right)\)
\(3C=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)\)\(-\left(0.1.2+1.2.3+2.3.4+...+98.99.100\right)\)
\(3C=99.100.101-0.1.2\)
\(3C=999900-0=999900\)
\(C=999900:3\)
\(\Rightarrow C=333300\)
1/1.2+1/2.3+1/3.4+...+1/2009.2010
= 1 - 1/2 . 1/2 -1/3 . 1/3 - 1/4 ... 1/2009 - 1/2010
= 1 - 1/ 2010
=1/2010
1/1.2+1/2.3+1/3.4+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
=(1-1/2)+(1/2-1/3)+...+(1/9-1/10)
=1-1/10
=9/10
Tính tổng sau : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010.
Ai làm đúng mk like cho nha ^_^
=1 - 1/2 + 1/2 - 1/3 + ..... + 1/2009 - 1/2010
=1 - 1/2010
=2009/2010
1-1/2+1/2-1/3+1/3-1/4+... +1/2009-1/2010
1-1/2010=2009/2010
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
Thực hiện phép tính
-1-(1+2)-(1+2+3)-...-(1+2+3+...+2009+2010)/1.2+2.3+3.4+...+2010.2011
Thực hiện phép tính:
\(A=3.\dfrac{1}{1.2}-5.\dfrac{1}{2.3}+7.\dfrac{1}{3.4}-...+15.\dfrac{1}{7.8}-17.\dfrac{1}{8.9}\)
Tính nhanh
C=1.2+2.3+3.4+...+2014.2015
K=1.2+2.3+3.4+..+(n-1).n
cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)
3C=2014.2015.2016
C=2014.2015.2016:3