cho A = 3^1 + 3^2 +3^3 +3^4+...+3^2012.chứng minh rằng A chia hết cho 120
Ta có: \(A=3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+...+3^{2009}.40\)
\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
hay \(A⋮120\) (đpcm)
a) C = 3 + 3^2 + 3^3 + 3^4 + ....+ 3^119 + 3^120
chứng minh rằng tổng hiệu sau chia hết cho 4
b) chứng minh A = 1 + 5 +5^2 + ..... + 5^402 + 5^403 + 5^404 chia hết cho 31
c) chứng minh D = 4 + 4^2 + 4^3 + 4^4 +... + 4^2011 + 4&2012 chia hết cho 5
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
b)
A=(1+5+52)+(53+54+55)+...(5402+5403+5404)
A=31.1+31.53+...+31.5402
A=31.(1+53+...+5402)
=>A chia hết cho 31
=>Đâu phải con ma
a) chứng minh rằng A = 1+4+4^2+4^3+......4^2012 chia hết cho 21
b)chứng minh rằng A=1+7+7^2+7^3+............+7^101 chia hết cho 8
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
cho A=1+3+32+33+34+......+32012
chứng minh rằng A chia hết cho 4
Bạn ơi đề thừa số 1 thì phải nha
A = (3+3^2)+(3^3+3^4)+....+(3^2011+3^2012)
= 3.(1+3)+3^3.(1+3)+....+3^2011.(1+3)
= 4+3^3.4+.....+3^2011.4
= 4.(3+3^3+....+3^2011) chia hết cho 4
k mk nha
Cho A= 3^0+3^1+3^2+3^3+...+3^2011+3^2012.Chứng minh rằng:(A-1)chia hết cho 40
A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)
A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)
A-1=40+80*40+...+3^2009*40
A-1=40*(1+80+..+3^2009)
Cho A=3+3^2+3^3+3^4+...+3^120.Chứng minh rằng:
a)A chia hết cho 39
b)A chia hết cho120
cho số A= 3+3^2+3^3+3^4+...+3^98+3^99+3^100. Chứng minh rằng A chia hết cho 120
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
Cho A = 3^0+3^1+3^2+3^3+....+3^2011+3^2012
Chứng minh rằng : ( A-1) chia hết 40
A= 1 +(3^1+3^2+3^3+3^4)+..............................+(3^2009+3^2010+3^2011+3^2012)
A=1+120+................................+3^2009*(3^1+3^2+3^3+3^4)
A=1+(1+.....................+3^2009)*120
Vì 120 chia hết cho 40
suy ra (1+..........................+3^2009) chia hết cho 40
suy ra A chia 40 dư 1
suy ra A-1 chia hết cho 40
chứng minh rằng :
a=1+4+42+43+...+42012 chia hết cho 21
b=1+3+32+33+...+311 chia hết cho 13*40
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3