tìm ngiệm nguyên dương của pt :
5x-3y=2xy-11
tìm ngiệm nguyên dương của pt :
5x-3y=2xy-11
tìm ngiệm nguyên của phương trình
3x-2y=1
18x-30y=59
7(x-1)+3y=2xy
12x+19y=94
tìm ngiệm nguyên dương của pt
12x+19y=94
13x=3y=50
21x+31y=280
\(\frac{4}{x}+\frac{2}{y}=1\)
tính khoảng cách từ gốc tọa độ O đến đg thẳng 8x+6y=3
giải pt nghiệm nguyên: 5x - 3y = 2xy - 11
ta có: \(5x-3y=2xy-11\)
<=>\(2x-2xy+3-3y+3x=-8\)
<=>\(2x\left(1-y\right)+3\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)
<=>\(\left(2x+3\right)\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)
<=>\(\left(2x+3\right)\left(1-y+\frac{3}{2}\right)=-\frac{7}{2}\)
<=>\(\left(2x+3\right)\left(2-2y+3\right)=-7\)
TH1: \(\hept{\begin{cases}2x+3=1\\2-2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}}\)
TH2:\(\hept{\begin{cases}2x+3=-1\\2-2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TH3:\(\hept{\begin{cases}2x+3=7\\2-2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
TH4:\(\hept{\begin{cases}2x+3=-7\\2-2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)
Vậy nghiệm của pt là: (x;y)={ (-1;6);(-2;-1);(2;3);(-5;2)}
Tìm nghiệm nguyên của phương trình sau:
5x-3y=2xy-11
Biểu diễn y theo x :
\(\left(2x+3\right)y=5x+11\)
Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:
\(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)
Để \(y\) \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)
\(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)
\(\implies\) \(2x+10\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3+7\) chia hết cho \(2x+3\)
\(\implies\) \(7\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3\) \(\in\) \(Ư\)(\(7\))={ \(1;-1;7;-7\) }
Ta có bảng sau:
\(2x+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(-1\) | \(-2\) | \(2\) | \(-5\) |
\(y\) | \(6\) | \(-1\) | \(3\) | \(2\) |
Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }
Tìm nghiệm nguyên của phương trình:
1. 2xy-x+y = 3
2. 5x-3y = 2xy-11
1. \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)
\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)
Ta lập bảng giá trị:
\(2y-1\) | 1 | 5 | -1 | -5 |
\(2x+1\) | 5 | 1 | -5 | -1 |
\(x\) | 2 | 0 | -3 | -1 |
\(y\) | 1 | 3 | 0 | -2 |
Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)
2xy-x+y=3
2(2xy-x+y)=2.3
4xy-2x+2y=6
2x(2y-1)-2y=6
2x(2y-1)-2y+1=6+1
2x(2y-1)-(2y-1)=7
(2x-1)(2y-1)=7
tìm ngiệm nguyên dương của pt 9x-5=y(y-1)
\(\Leftrightarrow36x-20=4y^2-4y\)
\(\Leftrightarrow18\left(2x-1\right)=\left(2y-1\right)^2+1\)
Vế trái chia hết cho 3, vế phải chia 3 luôn dư 1 hoặc 2
Vậy không tồn tại cặp số nguyên x, y thỏa mãn
Vì \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\)
\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)
\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)
Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2.
Vậy pt đã cho không có nghiệm nguyên.
Tìm các nghiệm nguyên của phương trình :
\(5x-3y=2xy-11\)
Biểu diễn y theo x :
\(\left(2x+3\right)y=5x+11\)
Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:
\(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)
Để \(y\) \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)
\(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)
\(\implies\) \(2x+10\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3+7\) chia hết cho \(2x+3\)
\(\implies\) \(7\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3\) \(\in\) \(Ư\)(\(7\))={ \(1;-1;7;-7\) }
Ta có bảng sau:
\(2x+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(-1\) | \(-2\) | \(2\) | \(-5\) |
\(y\) | \(6\) | \(-1\) | \(3\) | \(2\) |
Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }
1 cho x,y,z là 3 số dương thõa mãm xyz=1 CM \(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\le1\)
2 Tìm các chữ số a,b sao cho \(\overline{a56b}⋮45\)
3 Tìm ngiệm nguyên của pt \(x^2+2y^2+2xy+3y-4=0\)
3.(x+y)^2+y^2+3y+9/4=25/4
(x+y)^2+(y+3/2)^2=25/4
2
Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)
\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9
\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)
Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)
\(\Rightarrow a=2\)
\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)
\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)
Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)
\(3\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2+3y-4\right)=0\Leftrightarrow4\left(x+y\right)^2+\left(4y^2+12y-4\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(2y+3\right)^2=13\)
...........
tìm ngiệm nguyên dương của pt \(xyz=2\left(x+y+z\right)\)
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow2\left(x+y+z\right)\le6x\Rightarrow xyz\le6x\Rightarrow yz\le6\Rightarrow\left(y;z\right)=\left(3;2\right)=\left(1;1\right)=\left(3;1\right);\left(4;1\right)=\left(2;1\right)=\left(6;1\right)\) Vì \(y\ge z\)
Chị làm nốt ạ.